ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimfALT2 Unicode version

Theorem dvelimfALT2 1831
Description: Proof of dvelimf 2034 using dveeq2 1829 (shown as the last hypothesis) instead of ax12 1526. This shows that ax12 1526 could be replaced by dveeq2 1829 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
Hypotheses
Ref Expression
dvelimfALT2.1  |-  ( ph  ->  A. x ph )
dvelimfALT2.2  |-  ( ps 
->  A. z ps )
dvelimfALT2.3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
dvelimfALT2.4  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
Assertion
Ref Expression
dvelimfALT2  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem dvelimfALT2
StepHypRef Expression
1 ax-17 1540 . . 3  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
2 hbn1 1666 . . . 4  |-  ( -. 
A. x  x  =  y  ->  A. x  -.  A. x  x  =  y )
3 dvelimfALT2.4 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
4 dvelimfALT2.1 . . . . 5  |-  ( ph  ->  A. x ph )
54a1i 9 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
62, 3, 5hbimd 1587 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( (
z  =  y  ->  ph )  ->  A. x
( z  =  y  ->  ph ) ) )
71, 6hbald 1505 . 2  |-  ( -. 
A. x  x  =  y  ->  ( A. z ( z  =  y  ->  ph )  ->  A. x A. z ( z  =  y  ->  ph ) ) )
8 dvelimfALT2.2 . . 3  |-  ( ps 
->  A. z ps )
9 dvelimfALT2.3 . . 3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
108, 9equsalh 1740 . 2  |-  ( A. z ( z  =  y  ->  ph )  <->  ps )
1110albii 1484 . 2  |-  ( A. x A. z ( z  =  y  ->  ph )  <->  A. x ps )
127, 10, 113imtr3g 204 1  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator