ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimfALT2 Unicode version

Theorem dvelimfALT2 1839
Description: Proof of dvelimf 2042 using dveeq2 1837 (shown as the last hypothesis) instead of ax12 1534. This shows that ax12 1534 could be replaced by dveeq2 1837 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
Hypotheses
Ref Expression
dvelimfALT2.1  |-  ( ph  ->  A. x ph )
dvelimfALT2.2  |-  ( ps 
->  A. z ps )
dvelimfALT2.3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
dvelimfALT2.4  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
Assertion
Ref Expression
dvelimfALT2  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem dvelimfALT2
StepHypRef Expression
1 ax-17 1548 . . 3  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
2 hbn1 1674 . . . 4  |-  ( -. 
A. x  x  =  y  ->  A. x  -.  A. x  x  =  y )
3 dvelimfALT2.4 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
4 dvelimfALT2.1 . . . . 5  |-  ( ph  ->  A. x ph )
54a1i 9 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
62, 3, 5hbimd 1595 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( (
z  =  y  ->  ph )  ->  A. x
( z  =  y  ->  ph ) ) )
71, 6hbald 1513 . 2  |-  ( -. 
A. x  x  =  y  ->  ( A. z ( z  =  y  ->  ph )  ->  A. x A. z ( z  =  y  ->  ph ) ) )
8 dvelimfALT2.2 . . 3  |-  ( ps 
->  A. z ps )
9 dvelimfALT2.3 . . 3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
108, 9equsalh 1748 . 2  |-  ( A. z ( z  =  y  ->  ph )  <->  ps )
1110albii 1492 . 2  |-  ( A. x A. z ( z  =  y  ->  ph )  <->  A. x ps )
127, 10, 113imtr3g 204 1  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1370    = wceq 1372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator