Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax16 | Unicode version |
Description: Theorem showing that ax-16 1807 is redundant if ax-17 1519 is included in the
axiom system. The important part of the proof is provided by aev 1805.
See ax16ALT 1852 for an alternate proof that does not require ax-10 1498 or ax12 1505. This theorem should not be referenced in any proof. Instead, use ax-16 1807 below so that theorems needing ax-16 1807 can be more easily identified. (Contributed by NM, 8-Nov-2006.) |
Ref | Expression |
---|---|
ax16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aev 1805 | . 2 | |
2 | ax-17 1519 | . . . 4 | |
3 | sbequ12 1764 | . . . . 5 | |
4 | 3 | biimpcd 158 | . . . 4 |
5 | 2, 4 | alimdh 1460 | . . 3 |
6 | 2 | hbsb3 1801 | . . . 4 |
7 | stdpc7 1763 | . . . 4 | |
8 | 6, 2, 7 | cbv3h 1736 | . . 3 |
9 | 5, 8 | syl6com 35 | . 2 |
10 | 1, 9 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: dveeq2 1808 dveeq2or 1809 a16g 1857 exists2 2116 |
Copyright terms: Public domain | W3C validator |