ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax16 Unicode version

Theorem ax16 1836
Description: Theorem showing that ax-16 1837 is redundant if ax-17 1549 is included in the axiom system. The important part of the proof is provided by aev 1835.

See ax16ALT 1882 for an alternate proof that does not require ax-10 1528 or ax12 1535.

This theorem should not be referenced in any proof. Instead, use ax-16 1837 below so that theorems needing ax-16 1837 can be more easily identified. (Contributed by NM, 8-Nov-2006.)

Assertion
Ref Expression
ax16  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ax16
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 aev 1835 . 2  |-  ( A. x  x  =  y  ->  A. z  x  =  z )
2 ax-17 1549 . . . 4  |-  ( ph  ->  A. z ph )
3 sbequ12 1794 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
43biimpcd 159 . . . 4  |-  ( ph  ->  ( x  =  z  ->  [ z  /  x ] ph ) )
52, 4alimdh 1490 . . 3  |-  ( ph  ->  ( A. z  x  =  z  ->  A. z [ z  /  x ] ph ) )
62hbsb3 1831 . . . 4  |-  ( [ z  /  x ] ph  ->  A. x [ z  /  x ] ph )
7 stdpc7 1793 . . . 4  |-  ( z  =  x  ->  ( [ z  /  x ] ph  ->  ph ) )
86, 2, 7cbv3h 1766 . . 3  |-  ( A. z [ z  /  x ] ph  ->  A. x ph )
95, 8syl6com 35 . 2  |-  ( A. z  x  =  z  ->  ( ph  ->  A. x ph ) )
101, 9syl 14 1  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  dveeq2  1838  dveeq2or  1839  a16g  1887  exists2  2151
  Copyright terms: Public domain W3C validator