Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax16 | Unicode version |
Description: Theorem showing that ax-16 1812 is redundant if ax-17 1524 is included in the
axiom system. The important part of the proof is provided by aev 1810.
See ax16ALT 1857 for an alternate proof that does not require ax-10 1503 or ax12 1510. This theorem should not be referenced in any proof. Instead, use ax-16 1812 below so that theorems needing ax-16 1812 can be more easily identified. (Contributed by NM, 8-Nov-2006.) |
Ref | Expression |
---|---|
ax16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aev 1810 | . 2 | |
2 | ax-17 1524 | . . . 4 | |
3 | sbequ12 1769 | . . . . 5 | |
4 | 3 | biimpcd 159 | . . . 4 |
5 | 2, 4 | alimdh 1465 | . . 3 |
6 | 2 | hbsb3 1806 | . . . 4 |
7 | stdpc7 1768 | . . . 4 | |
8 | 6, 2, 7 | cbv3h 1741 | . . 3 |
9 | 5, 8 | syl6com 35 | . 2 |
10 | 1, 9 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: dveeq2 1813 dveeq2or 1814 a16g 1862 exists2 2121 |
Copyright terms: Public domain | W3C validator |