ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax16ALT Unicode version

Theorem ax16ALT 1883
Description: Version of ax16 1837 that does not require ax-10 1529 or ax12 1536 for its proof. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax16ALT  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ax16ALT
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbequ12 1795 . 2  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
2 ax-17 1550 . . 3  |-  ( ph  ->  A. z ph )
32hbsb3 1832 . 2  |-  ( [ z  /  x ] ph  ->  A. x [ z  /  x ] ph )
41, 3ax16i 1882 1  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  dvelimALT  2039  dvelimfv  2040
  Copyright terms: Public domain W3C validator