Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbsb3 | GIF version |
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbsb3.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
hbsb3 | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb3.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | sbimi 1757 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑) |
3 | hbsb2a 1799 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-11 1499 ax-4 1503 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: nfs1 1802 sbcof2 1803 ax16 1806 sb8h 1847 sb8eh 1848 ax16ALT 1852 |
Copyright terms: Public domain | W3C validator |