Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb3 GIF version

Theorem hbsb3 1780
 Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbsb3.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
hbsb3 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem hbsb3
StepHypRef Expression
1 hbsb3.1 . . 3 (𝜑 → ∀𝑦𝜑)
21sbimi 1737 . 2 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑)
3 hbsb2a 1778 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
42, 3syl 14 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1329  [wsb 1735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-11 1484  ax-4 1487  ax-i9 1510  ax-ial 1514 This theorem depends on definitions:  df-bi 116  df-sb 1736 This theorem is referenced by:  nfs1  1781  sbcof2  1782  ax16  1785  sb8h  1826  sb8eh  1827  ax16ALT  1831
 Copyright terms: Public domain W3C validator