| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsb3 | GIF version | ||
| Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hbsb3.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| Ref | Expression |
|---|---|
| hbsb3 | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbsb3.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | sbimi 1786 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑) |
| 3 | hbsb2a 1828 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-11 1528 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 |
| This theorem is referenced by: nfs1 1831 sbcof2 1832 ax16 1835 sb8h 1876 sb8eh 1877 ax16ALT 1881 |
| Copyright terms: Public domain | W3C validator |