ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupcl Unicode version

Theorem gcdsupcl 11891
Description: Closure of the supremum used in defining  gcd. A lemma for gcdval 11892 and gcdn0cl 11895. (Contributed by Jim Kingdon, 11-Dec-2021.)
Assertion
Ref Expression
gcdsupcl  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  NN )
Distinct variable groups:    n, X    n, Y

Proof of Theorem gcdsupcl
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1zzd 9218 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  1  e.  ZZ )
2 breq1 3985 . . . 4  |-  ( n  =  1  ->  (
n  ||  X  <->  1  ||  X ) )
3 breq1 3985 . . . 4  |-  ( n  =  1  ->  (
n  ||  Y  <->  1  ||  Y ) )
42, 3anbi12d 465 . . 3  |-  ( n  =  1  ->  (
( n  ||  X  /\  n  ||  Y )  <-> 
( 1  ||  X  /\  1  ||  Y ) ) )
5 1dvds 11745 . . . . 5  |-  ( X  e.  ZZ  ->  1  ||  X )
6 1dvds 11745 . . . . 5  |-  ( Y  e.  ZZ  ->  1  ||  Y )
75, 6anim12i 336 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( 1  ||  X  /\  1  ||  Y ) )
87adantr 274 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( 1  ||  X  /\  1  ||  Y
) )
9 elnnuz 9502 . . . . . . 7  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
109biimpri 132 . . . . . 6  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
11 simpll 519 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  X  e.  ZZ )
12 dvdsdc 11738 . . . . . 6  |-  ( ( n  e.  NN  /\  X  e.  ZZ )  -> DECID  n 
||  X )
1310, 11, 12syl2an2 584 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  X )
14 simplr 520 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  Y  e.  ZZ )
15 dvdsdc 11738 . . . . . 6  |-  ( ( n  e.  NN  /\  Y  e.  ZZ )  -> DECID  n 
||  Y )
1610, 14, 15syl2an2 584 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  Y )
17 dcan2 924 . . . . 5  |-  (DECID  n  ||  X  ->  (DECID  n  ||  Y  -> DECID  (
n  ||  X  /\  n  ||  Y ) ) )
1813, 16, 17sylc 62 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
( n  ||  X  /\  n  ||  Y ) )
1918adantlr 469 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  n  e.  ( ZZ>= `  1 )
)  -> DECID  ( n  ||  X  /\  n  ||  Y ) )
20 simplll 523 . . . . 5  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  X  e.  ZZ )
21 dvdsbnd 11889 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
22 nnuz 9501 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2322rexeqi 2666 . . . . . . 7  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
2421, 23sylib 121 . . . . . 6  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
25 id 19 . . . . . . . . 9  |-  ( -.  n  ||  X  ->  -.  n  ||  X )
2625intnanrd 922 . . . . . . . 8  |-  ( -.  n  ||  X  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
2726ralimi 2529 . . . . . . 7  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
2827reximi 2563 . . . . . 6  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
2924, 28syl 14 . . . . 5  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3020, 29sylancom 417 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
31 simpllr 524 . . . . 5  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  Y  e.  ZZ )
32 dvdsbnd 11889 . . . . . . 7  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3322rexeqi 2666 . . . . . . 7  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3432, 33sylib 121 . . . . . 6  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
35 id 19 . . . . . . . . 9  |-  ( -.  n  ||  Y  ->  -.  n  ||  Y )
3635intnand 921 . . . . . . . 8  |-  ( -.  n  ||  Y  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
3736ralimi 2529 . . . . . . 7  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
3837reximi 2563 . . . . . 6  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3934, 38syl 14 . . . . 5  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
4031, 39sylancom 417 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
41 simpr 109 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  -.  ( X  =  0  /\  Y  =  0 ) )
42 simpll 519 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  X  e.  ZZ )
43 0z 9202 . . . . . . . 8  |-  0  e.  ZZ
44 zdceq 9266 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  0  e.  ZZ )  -> DECID  X  =  0 )
4542, 43, 44sylancl 410 . . . . . . 7  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  -> DECID 
X  =  0 )
46 ianordc 889 . . . . . . 7  |-  (DECID  X  =  0  ->  ( -.  ( X  =  0  /\  Y  =  0
)  <->  ( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4745, 46syl 14 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  ( X  =  0  /\  Y  =  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4841, 47mpbid 146 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  X  =  0  \/  -.  Y  =  0 ) )
49 df-ne 2337 . . . . . 6  |-  ( X  =/=  0  <->  -.  X  =  0 )
50 df-ne 2337 . . . . . 6  |-  ( Y  =/=  0  <->  -.  Y  =  0 )
5149, 50orbi12i 754 . . . . 5  |-  ( ( X  =/=  0  \/  Y  =/=  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) )
5248, 51sylibr 133 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( X  =/=  0  \/  Y  =/=  0 ) )
5330, 40, 52mpjaodan 788 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
541, 4, 8, 19, 53zsupcl 11880 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  ( ZZ>= `  1 )
)
5554, 22eleqtrrdi 2260 1  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445   {crab 2448   class class class wbr 3982   ` cfv 5188   supcsup 6947   RRcr 7752   0cc0 7753   1c1 7754    < clt 7933   NNcn 8857   ZZcz 9191   ZZ>=cuz 9466    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728
This theorem is referenced by:  gcdval  11892  gcdn0cl  11895
  Copyright terms: Public domain W3C validator