ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupcl Unicode version

Theorem gcdsupcl 11906
Description: Closure of the supremum used in defining  gcd. A lemma for gcdval 11907 and gcdn0cl 11910. (Contributed by Jim Kingdon, 11-Dec-2021.)
Assertion
Ref Expression
gcdsupcl  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  NN )
Distinct variable groups:    n, X    n, Y

Proof of Theorem gcdsupcl
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1zzd 9232 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  1  e.  ZZ )
2 breq1 3990 . . . 4  |-  ( n  =  1  ->  (
n  ||  X  <->  1  ||  X ) )
3 breq1 3990 . . . 4  |-  ( n  =  1  ->  (
n  ||  Y  <->  1  ||  Y ) )
42, 3anbi12d 470 . . 3  |-  ( n  =  1  ->  (
( n  ||  X  /\  n  ||  Y )  <-> 
( 1  ||  X  /\  1  ||  Y ) ) )
5 1dvds 11760 . . . . 5  |-  ( X  e.  ZZ  ->  1  ||  X )
6 1dvds 11760 . . . . 5  |-  ( Y  e.  ZZ  ->  1  ||  Y )
75, 6anim12i 336 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( 1  ||  X  /\  1  ||  Y ) )
87adantr 274 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( 1  ||  X  /\  1  ||  Y
) )
9 elnnuz 9516 . . . . . . 7  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
109biimpri 132 . . . . . 6  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
11 simpll 524 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  X  e.  ZZ )
12 dvdsdc 11753 . . . . . 6  |-  ( ( n  e.  NN  /\  X  e.  ZZ )  -> DECID  n 
||  X )
1310, 11, 12syl2an2 589 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  X )
14 simplr 525 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  Y  e.  ZZ )
15 dvdsdc 11753 . . . . . 6  |-  ( ( n  e.  NN  /\  Y  e.  ZZ )  -> DECID  n 
||  Y )
1610, 14, 15syl2an2 589 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  Y )
17 dcan2 929 . . . . 5  |-  (DECID  n  ||  X  ->  (DECID  n  ||  Y  -> DECID  (
n  ||  X  /\  n  ||  Y ) ) )
1813, 16, 17sylc 62 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
( n  ||  X  /\  n  ||  Y ) )
1918adantlr 474 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  n  e.  ( ZZ>= `  1 )
)  -> DECID  ( n  ||  X  /\  n  ||  Y ) )
20 simplll 528 . . . . 5  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  X  e.  ZZ )
21 dvdsbnd 11904 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
22 nnuz 9515 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2322rexeqi 2670 . . . . . . 7  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
2421, 23sylib 121 . . . . . 6  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
25 id 19 . . . . . . . . 9  |-  ( -.  n  ||  X  ->  -.  n  ||  X )
2625intnanrd 927 . . . . . . . 8  |-  ( -.  n  ||  X  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
2726ralimi 2533 . . . . . . 7  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
2827reximi 2567 . . . . . 6  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
2924, 28syl 14 . . . . 5  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3020, 29sylancom 418 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
31 simpllr 529 . . . . 5  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  Y  e.  ZZ )
32 dvdsbnd 11904 . . . . . . 7  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3322rexeqi 2670 . . . . . . 7  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3432, 33sylib 121 . . . . . 6  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
35 id 19 . . . . . . . . 9  |-  ( -.  n  ||  Y  ->  -.  n  ||  Y )
3635intnand 926 . . . . . . . 8  |-  ( -.  n  ||  Y  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
3736ralimi 2533 . . . . . . 7  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
3837reximi 2567 . . . . . 6  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3934, 38syl 14 . . . . 5  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
4031, 39sylancom 418 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
41 simpr 109 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  -.  ( X  =  0  /\  Y  =  0 ) )
42 simpll 524 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  X  e.  ZZ )
43 0z 9216 . . . . . . . 8  |-  0  e.  ZZ
44 zdceq 9280 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  0  e.  ZZ )  -> DECID  X  =  0 )
4542, 43, 44sylancl 411 . . . . . . 7  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  -> DECID 
X  =  0 )
46 ianordc 894 . . . . . . 7  |-  (DECID  X  =  0  ->  ( -.  ( X  =  0  /\  Y  =  0
)  <->  ( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4745, 46syl 14 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  ( X  =  0  /\  Y  =  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4841, 47mpbid 146 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  X  =  0  \/  -.  Y  =  0 ) )
49 df-ne 2341 . . . . . 6  |-  ( X  =/=  0  <->  -.  X  =  0 )
50 df-ne 2341 . . . . . 6  |-  ( Y  =/=  0  <->  -.  Y  =  0 )
5149, 50orbi12i 759 . . . . 5  |-  ( ( X  =/=  0  \/  Y  =/=  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) )
5248, 51sylibr 133 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( X  =/=  0  \/  Y  =/=  0 ) )
5330, 40, 52mpjaodan 793 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
541, 4, 8, 19, 53zsupcl 11895 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  ( ZZ>= `  1 )
)
5554, 22eleqtrrdi 2264 1  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   {crab 2452   class class class wbr 3987   ` cfv 5196   supcsup 6957   RRcr 7766   0cc0 7767   1c1 7768    < clt 7947   NNcn 8871   ZZcz 9205   ZZ>=cuz 9480    || cdvds 11742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-sup 6959  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-dvds 11743
This theorem is referenced by:  gcdval  11907  gcdn0cl  11910
  Copyright terms: Public domain W3C validator