ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupex Unicode version

Theorem gcdsupex 11441
Description: Existence of the supremum used in defining  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdsupex  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y
) } y  < 
z ) ) )
Distinct variable groups:    n, X, x, y, z    n, Y, x, y, z

Proof of Theorem gcdsupex
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1zzd 8933 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  1  e.  ZZ )
2 breq1 3878 . . 3  |-  ( n  =  1  ->  (
n  ||  X  <->  1  ||  X ) )
3 breq1 3878 . . 3  |-  ( n  =  1  ->  (
n  ||  Y  <->  1  ||  Y ) )
42, 3anbi12d 460 . 2  |-  ( n  =  1  ->  (
( n  ||  X  /\  n  ||  Y )  <-> 
( 1  ||  X  /\  1  ||  Y ) ) )
5 1dvds 11302 . . . 4  |-  ( X  e.  ZZ  ->  1  ||  X )
6 1dvds 11302 . . . 4  |-  ( Y  e.  ZZ  ->  1  ||  Y )
75, 6anim12i 334 . . 3  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( 1  ||  X  /\  1  ||  Y ) )
87adantr 272 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( 1  ||  X  /\  1  ||  Y
) )
9 elnnuz 9212 . . . . . 6  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
109biimpri 132 . . . . 5  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
11 simpll 499 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  X  e.  ZZ )
12 dvdsdc 11296 . . . . 5  |-  ( ( n  e.  NN  /\  X  e.  ZZ )  -> DECID  n 
||  X )
1310, 11, 12syl2an2 564 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  X )
14 simplr 500 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  Y  e.  ZZ )
15 dvdsdc 11296 . . . . 5  |-  ( ( n  e.  NN  /\  Y  e.  ZZ )  -> DECID  n 
||  Y )
1610, 14, 15syl2an2 564 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  Y )
17 dcan 886 . . . 4  |-  (DECID  n  ||  X  ->  (DECID  n  ||  Y  -> DECID  (
n  ||  X  /\  n  ||  Y ) ) )
1813, 16, 17sylc 62 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
( n  ||  X  /\  n  ||  Y ) )
1918adantlr 464 . 2  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  n  e.  ( ZZ>= `  1 )
)  -> DECID  ( n  ||  X  /\  n  ||  Y ) )
20 simplll 503 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  X  e.  ZZ )
21 dvdsbnd 11440 . . . . . 6  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
22 nnuz 9211 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2322rexeqi 2589 . . . . . 6  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
2421, 23sylib 121 . . . . 5  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
25 id 19 . . . . . . . 8  |-  ( -.  n  ||  X  ->  -.  n  ||  X )
2625intnanrd 885 . . . . . . 7  |-  ( -.  n  ||  X  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
2726ralimi 2454 . . . . . 6  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
2827reximi 2488 . . . . 5  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
2924, 28syl 14 . . . 4  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3020, 29sylancom 414 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
31 simpllr 504 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  Y  e.  ZZ )
32 dvdsbnd 11440 . . . . . 6  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3322rexeqi 2589 . . . . . 6  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3432, 33sylib 121 . . . . 5  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
35 id 19 . . . . . . . 8  |-  ( -.  n  ||  Y  ->  -.  n  ||  Y )
3635intnand 884 . . . . . . 7  |-  ( -.  n  ||  Y  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
3736ralimi 2454 . . . . . 6  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
3837reximi 2488 . . . . 5  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3934, 38syl 14 . . . 4  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
4031, 39sylancom 414 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
41 simpr 109 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  -.  ( X  =  0  /\  Y  =  0 ) )
42 simpll 499 . . . . . . 7  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  X  e.  ZZ )
43 0z 8917 . . . . . . 7  |-  0  e.  ZZ
44 zdceq 8978 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  0  e.  ZZ )  -> DECID  X  =  0 )
4542, 43, 44sylancl 407 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  -> DECID 
X  =  0 )
46 ianordc 843 . . . . . 6  |-  (DECID  X  =  0  ->  ( -.  ( X  =  0  /\  Y  =  0
)  <->  ( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4745, 46syl 14 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  ( X  =  0  /\  Y  =  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4841, 47mpbid 146 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  X  =  0  \/  -.  Y  =  0 ) )
49 df-ne 2268 . . . . 5  |-  ( X  =/=  0  <->  -.  X  =  0 )
50 df-ne 2268 . . . . 5  |-  ( Y  =/=  0  <->  -.  Y  =  0 )
5149, 50orbi12i 722 . . . 4  |-  ( ( X  =/=  0  \/  Y  =/=  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) )
5248, 51sylibr 133 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( X  =/=  0  \/  Y  =/=  0 ) )
5330, 40, 52mpjaodan 753 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
541, 4, 8, 19, 53zsupcllemex 11434 1  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y
) } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670  DECID wdc 786    = wceq 1299    e. wcel 1448    =/= wne 2267   A.wral 2375   E.wrex 2376   {crab 2379   class class class wbr 3875   ` cfv 5059   RRcr 7499   0cc0 7500   1c1 7501    < clt 7672   NNcn 8578   ZZcz 8906   ZZ>=cuz 9176    || cdvds 11288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-fl 9884  df-mod 9937  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-dvds 11289
This theorem is referenced by:  gcddvds  11447  dvdslegcd  11448
  Copyright terms: Public domain W3C validator