| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcdsupex | Unicode version | ||
| Description: Existence of the supremum
used in defining |
| Ref | Expression |
|---|---|
| gcdsupex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9419 |
. 2
| |
| 2 | breq1 4054 |
. . 3
| |
| 3 | breq1 4054 |
. . 3
| |
| 4 | 2, 3 | anbi12d 473 |
. 2
|
| 5 | 1dvds 12191 |
. . . 4
| |
| 6 | 1dvds 12191 |
. . . 4
| |
| 7 | 5, 6 | anim12i 338 |
. . 3
|
| 8 | 7 | adantr 276 |
. 2
|
| 9 | elnnuz 9705 |
. . . . . 6
| |
| 10 | 9 | biimpri 133 |
. . . . 5
|
| 11 | simpll 527 |
. . . . 5
| |
| 12 | dvdsdc 12184 |
. . . . 5
| |
| 13 | 10, 11, 12 | syl2an2 594 |
. . . 4
|
| 14 | simplr 528 |
. . . . 5
| |
| 15 | dvdsdc 12184 |
. . . . 5
| |
| 16 | 10, 14, 15 | syl2an2 594 |
. . . 4
|
| 17 | 13, 16 | dcand 935 |
. . 3
|
| 18 | 17 | adantlr 477 |
. 2
|
| 19 | dvdsbnd 12352 |
. . . . . 6
| |
| 20 | nnuz 9704 |
. . . . . . 7
| |
| 21 | 20 | rexeqi 2708 |
. . . . . 6
|
| 22 | 19, 21 | sylib 122 |
. . . . 5
|
| 23 | id 19 |
. . . . . . . 8
| |
| 24 | 23 | intnanrd 934 |
. . . . . . 7
|
| 25 | 24 | ralimi 2570 |
. . . . . 6
|
| 26 | 25 | reximi 2604 |
. . . . 5
|
| 27 | 22, 26 | syl 14 |
. . . 4
|
| 28 | 27 | ad4ant14 514 |
. . 3
|
| 29 | dvdsbnd 12352 |
. . . . . 6
| |
| 30 | 20 | rexeqi 2708 |
. . . . . 6
|
| 31 | 29, 30 | sylib 122 |
. . . . 5
|
| 32 | id 19 |
. . . . . . . 8
| |
| 33 | 32 | intnand 933 |
. . . . . . 7
|
| 34 | 33 | ralimi 2570 |
. . . . . 6
|
| 35 | 34 | reximi 2604 |
. . . . 5
|
| 36 | 31, 35 | syl 14 |
. . . 4
|
| 37 | 36 | ad4ant24 516 |
. . 3
|
| 38 | simpr 110 |
. . . . 5
| |
| 39 | simpll 527 |
. . . . . . 7
| |
| 40 | 0z 9403 |
. . . . . . 7
| |
| 41 | zdceq 9468 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | sylancl 413 |
. . . . . 6
|
| 43 | ianordc 901 |
. . . . . 6
| |
| 44 | 42, 43 | syl 14 |
. . . . 5
|
| 45 | 38, 44 | mpbid 147 |
. . . 4
|
| 46 | df-ne 2378 |
. . . . 5
| |
| 47 | df-ne 2378 |
. . . . 5
| |
| 48 | 46, 47 | orbi12i 766 |
. . . 4
|
| 49 | 45, 48 | sylibr 134 |
. . 3
|
| 50 | 28, 37, 49 | mpjaodan 800 |
. 2
|
| 51 | 1, 4, 8, 18, 50 | zsupcllemex 10395 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-dvds 12174 |
| This theorem is referenced by: gcddvds 12359 dvdslegcd 12360 |
| Copyright terms: Public domain | W3C validator |