ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupex Unicode version

Theorem gcdsupex 11993
Description: Existence of the supremum used in defining  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdsupex  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y
) } y  < 
z ) ) )
Distinct variable groups:    n, X, x, y, z    n, Y, x, y, z

Proof of Theorem gcdsupex
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1zzd 9311 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  1  e.  ZZ )
2 breq1 4021 . . 3  |-  ( n  =  1  ->  (
n  ||  X  <->  1  ||  X ) )
3 breq1 4021 . . 3  |-  ( n  =  1  ->  (
n  ||  Y  <->  1  ||  Y ) )
42, 3anbi12d 473 . 2  |-  ( n  =  1  ->  (
( n  ||  X  /\  n  ||  Y )  <-> 
( 1  ||  X  /\  1  ||  Y ) ) )
5 1dvds 11847 . . . 4  |-  ( X  e.  ZZ  ->  1  ||  X )
6 1dvds 11847 . . . 4  |-  ( Y  e.  ZZ  ->  1  ||  Y )
75, 6anim12i 338 . . 3  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( 1  ||  X  /\  1  ||  Y ) )
87adantr 276 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( 1  ||  X  /\  1  ||  Y
) )
9 elnnuz 9596 . . . . . 6  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
109biimpri 133 . . . . 5  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
11 simpll 527 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  X  e.  ZZ )
12 dvdsdc 11840 . . . . 5  |-  ( ( n  e.  NN  /\  X  e.  ZZ )  -> DECID  n 
||  X )
1310, 11, 12syl2an2 594 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  X )
14 simplr 528 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  Y  e.  ZZ )
15 dvdsdc 11840 . . . . 5  |-  ( ( n  e.  NN  /\  Y  e.  ZZ )  -> DECID  n 
||  Y )
1610, 14, 15syl2an2 594 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  Y )
1713, 16dcand 934 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
( n  ||  X  /\  n  ||  Y ) )
1817adantlr 477 . 2  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  n  e.  ( ZZ>= `  1 )
)  -> DECID  ( n  ||  X  /\  n  ||  Y ) )
19 dvdsbnd 11992 . . . . . 6  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
20 nnuz 9595 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2120rexeqi 2691 . . . . . 6  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
2219, 21sylib 122 . . . . 5  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
23 id 19 . . . . . . . 8  |-  ( -.  n  ||  X  ->  -.  n  ||  X )
2423intnanrd 933 . . . . . . 7  |-  ( -.  n  ||  X  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
2524ralimi 2553 . . . . . 6  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
2625reximi 2587 . . . . 5  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
2722, 26syl 14 . . . 4  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
2827ad4ant14 514 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
29 dvdsbnd 11992 . . . . . 6  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3020rexeqi 2691 . . . . . 6  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3129, 30sylib 122 . . . . 5  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
32 id 19 . . . . . . . 8  |-  ( -.  n  ||  Y  ->  -.  n  ||  Y )
3332intnand 932 . . . . . . 7  |-  ( -.  n  ||  Y  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
3433ralimi 2553 . . . . . 6  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
3534reximi 2587 . . . . 5  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3631, 35syl 14 . . . 4  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3736ad4ant24 516 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
38 simpr 110 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  -.  ( X  =  0  /\  Y  =  0 ) )
39 simpll 527 . . . . . . 7  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  X  e.  ZZ )
40 0z 9295 . . . . . . 7  |-  0  e.  ZZ
41 zdceq 9359 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  0  e.  ZZ )  -> DECID  X  =  0 )
4239, 40, 41sylancl 413 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  -> DECID 
X  =  0 )
43 ianordc 900 . . . . . 6  |-  (DECID  X  =  0  ->  ( -.  ( X  =  0  /\  Y  =  0
)  <->  ( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4442, 43syl 14 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  ( X  =  0  /\  Y  =  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4538, 44mpbid 147 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  X  =  0  \/  -.  Y  =  0 ) )
46 df-ne 2361 . . . . 5  |-  ( X  =/=  0  <->  -.  X  =  0 )
47 df-ne 2361 . . . . 5  |-  ( Y  =/=  0  <->  -.  Y  =  0 )
4846, 47orbi12i 765 . . . 4  |-  ( ( X  =/=  0  \/  Y  =/=  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) )
4945, 48sylibr 134 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( X  =/=  0  \/  Y  =/=  0 ) )
5028, 37, 49mpjaodan 799 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
511, 4, 8, 18, 50zsupcllemex 11982 1  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y
) } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   E.wrex 2469   {crab 2472   class class class wbr 4018   ` cfv 5235   RRcr 7841   0cc0 7842   1c1 7843    < clt 8023   NNcn 8950   ZZcz 9284   ZZ>=cuz 9559    || cdvds 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830
This theorem is referenced by:  gcddvds  11999  dvdslegcd  12000
  Copyright terms: Public domain W3C validator