ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupex Unicode version

Theorem gcdsupex 11875
Description: Existence of the supremum used in defining  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdsupex  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y
) } y  < 
z ) ) )
Distinct variable groups:    n, X, x, y, z    n, Y, x, y, z

Proof of Theorem gcdsupex
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1zzd 9209 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  1  e.  ZZ )
2 breq1 3979 . . 3  |-  ( n  =  1  ->  (
n  ||  X  <->  1  ||  X ) )
3 breq1 3979 . . 3  |-  ( n  =  1  ->  (
n  ||  Y  <->  1  ||  Y ) )
42, 3anbi12d 465 . 2  |-  ( n  =  1  ->  (
( n  ||  X  /\  n  ||  Y )  <-> 
( 1  ||  X  /\  1  ||  Y ) ) )
5 1dvds 11731 . . . 4  |-  ( X  e.  ZZ  ->  1  ||  X )
6 1dvds 11731 . . . 4  |-  ( Y  e.  ZZ  ->  1  ||  Y )
75, 6anim12i 336 . . 3  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( 1  ||  X  /\  1  ||  Y ) )
87adantr 274 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( 1  ||  X  /\  1  ||  Y
) )
9 elnnuz 9493 . . . . . 6  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
109biimpri 132 . . . . 5  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
11 simpll 519 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  X  e.  ZZ )
12 dvdsdc 11724 . . . . 5  |-  ( ( n  e.  NN  /\  X  e.  ZZ )  -> DECID  n 
||  X )
1310, 11, 12syl2an2 584 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  X )
14 simplr 520 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  ->  Y  e.  ZZ )
15 dvdsdc 11724 . . . . 5  |-  ( ( n  e.  NN  /\  Y  e.  ZZ )  -> DECID  n 
||  Y )
1610, 14, 15syl2an2 584 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
n  ||  Y )
17 dcan 923 . . . 4  |-  (DECID  n  ||  X  ->  (DECID  n  ||  Y  -> DECID  (
n  ||  X  /\  n  ||  Y ) ) )
1813, 16, 17sylc 62 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  n  e.  (
ZZ>= `  1 ) )  -> DECID 
( n  ||  X  /\  n  ||  Y ) )
1918adantlr 469 . 2  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  n  e.  ( ZZ>= `  1 )
)  -> DECID  ( n  ||  X  /\  n  ||  Y ) )
20 simplll 523 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  X  e.  ZZ )
21 dvdsbnd 11874 . . . . . 6  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
22 nnuz 9492 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2322rexeqi 2664 . . . . . 6  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
2421, 23sylib 121 . . . . 5  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X )
25 id 19 . . . . . . . 8  |-  ( -.  n  ||  X  ->  -.  n  ||  X )
2625intnanrd 922 . . . . . . 7  |-  ( -.  n  ||  X  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
2726ralimi 2527 . . . . . 6  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
2827reximi 2561 . . . . 5  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  X  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
2924, 28syl 14 . . . 4  |-  ( ( X  e.  ZZ  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3020, 29sylancom 417 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  X  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
31 simpllr 524 . . . 4  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  Y  e.  ZZ )
32 dvdsbnd 11874 . . . . . 6  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3322rexeqi 2664 . . . . . 6  |-  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  <->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
3432, 33sylib 121 . . . . 5  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y )
35 id 19 . . . . . . . 8  |-  ( -.  n  ||  Y  ->  -.  n  ||  Y )
3635intnand 921 . . . . . . 7  |-  ( -.  n  ||  Y  ->  -.  ( n  ||  X  /\  n  ||  Y ) )
3736ralimi 2527 . . . . . 6  |-  ( A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  A. n  e.  ( ZZ>= `  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
3837reximi 2561 . . . . 5  |-  ( E. j  e.  ( ZZ>= ` 
1 ) A. n  e.  ( ZZ>= `  j )  -.  n  ||  Y  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
3934, 38syl 14 . . . 4  |-  ( ( Y  e.  ZZ  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>=
`  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
4031, 39sylancom 417 . . 3  |-  ( ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0
) )  /\  Y  =/=  0 )  ->  E. j  e.  ( ZZ>= `  1 ) A. n  e.  ( ZZ>=
`  j )  -.  ( n  ||  X  /\  n  ||  Y ) )
41 simpr 109 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  -.  ( X  =  0  /\  Y  =  0 ) )
42 simpll 519 . . . . . . 7  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  X  e.  ZZ )
43 0z 9193 . . . . . . 7  |-  0  e.  ZZ
44 zdceq 9257 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  0  e.  ZZ )  -> DECID  X  =  0 )
4542, 43, 44sylancl 410 . . . . . 6  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  -> DECID 
X  =  0 )
46 ianordc 889 . . . . . 6  |-  (DECID  X  =  0  ->  ( -.  ( X  =  0  /\  Y  =  0
)  <->  ( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4745, 46syl 14 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  ( X  =  0  /\  Y  =  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) ) )
4841, 47mpbid 146 . . . 4  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( -.  X  =  0  \/  -.  Y  =  0 ) )
49 df-ne 2335 . . . . 5  |-  ( X  =/=  0  <->  -.  X  =  0 )
50 df-ne 2335 . . . . 5  |-  ( Y  =/=  0  <->  -.  Y  =  0 )
5149, 50orbi12i 754 . . . 4  |-  ( ( X  =/=  0  \/  Y  =/=  0 )  <-> 
( -.  X  =  0  \/  -.  Y  =  0 ) )
5248, 51sylibr 133 . . 3  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  ( X  =/=  0  \/  Y  =/=  0 ) )
5330, 40, 52mpjaodan 788 . 2  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. j  e.  (
ZZ>= `  1 ) A. n  e.  ( ZZ>= `  j )  -.  (
n  ||  X  /\  n  ||  Y ) )
541, 4, 8, 19, 53zsupcllemex 11864 1  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y
) } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1342    e. wcel 2135    =/= wne 2334   A.wral 2442   E.wrex 2443   {crab 2446   class class class wbr 3976   ` cfv 5182   RRcr 7743   0cc0 7744   1c1 7745    < clt 7924   NNcn 8848   ZZcz 9182   ZZ>=cuz 9457    || cdvds 11713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714
This theorem is referenced by:  gcddvds  11881  dvdslegcd  11882
  Copyright terms: Public domain W3C validator