ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idomcringd Unicode version

Theorem idomcringd 14110
Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
Hypothesis
Ref Expression
idomringd.1  |-  ( ph  ->  R  e. IDomn )
Assertion
Ref Expression
idomcringd  |-  ( ph  ->  R  e.  CRing )

Proof of Theorem idomcringd
StepHypRef Expression
1 idomringd.1 . . 3  |-  ( ph  ->  R  e. IDomn )
2 df-idom 14092 . . 3  |- IDomn  =  (
CRing  i^i Domn )
31, 2eleqtrdi 2299 . 2  |-  ( ph  ->  R  e.  ( CRing  i^i Domn
) )
43elin1d 3366 1  |-  ( ph  ->  R  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2177    i^i cin 3169   CRingccrg 13829  Domncdomn 14088  IDomncidom 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-idom 14092
This theorem is referenced by:  idomringd  14111  lgseisenlem3  15619
  Copyright terms: Public domain W3C validator