ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idomringd Unicode version

Theorem idomringd 13811
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1  |-  ( ph  ->  R  e. IDomn )
Assertion
Ref Expression
idomringd  |-  ( ph  ->  R  e.  Ring )

Proof of Theorem idomringd
StepHypRef Expression
1 idomringd.1 . . 3  |-  ( ph  ->  R  e. IDomn )
21idomcringd 13810 . 2  |-  ( ph  ->  R  e.  CRing )
32crngringd 13541 1  |-  ( ph  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   Ringcrg 13528  IDomncidom 13789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-cring 13531  df-idom 13792
This theorem is referenced by:  lgseisenlem3  15280
  Copyright terms: Public domain W3C validator