HomeHome Intuitionistic Logic Explorer
Theorem List (p. 142 of 157)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14101-14200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzringnzr 14101 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
 |-ring  e. NzRing
 
Theoremdvdsrzring 14102 Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
 |-  ||  =  ( ||r ` ring )
 
Theoremzringinvg 14103 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
 |-  ( A  e.  ZZ  -> 
 -u A  =  ( ( invg ` ring ) `  A ) )
 
Theoremzringsubgval 14104 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
 |-  .-  =  ( -g ` ring )   =>    |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  -  Y )  =  ( X  .-  Y ) )
 
Theoremzringmpg 14105 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
 |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
 
Theoremexpghmap 14106* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
Theoremmulgghm2 14107* The powers of a group element give a homomorphism from  ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  B  =  ( Base `  R )   =>    |-  (
 ( R  e.  Grp  /\ 
 .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
 
Theoremmulgrhm 14108* The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
 
Theoremmulgrhm2 14109* The powers of the element  1 give the unique ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 14110 Map the rationals into a field, or the integers into a ring.
 class  ZRHom
 
Syntaxczlm 14111 Augment an abelian group with vector space operations to turn it into a  ZZ-module.
 class  ZMod
 
Syntaxczn 14112 The ring of integers modulo  n.
 class ℤ/n
 
Definitiondf-zrh 14113 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 
n  =  1r  +  1r  +  ...  +  1r for integers (see also df-mulg 13193). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
 
Definitiondf-zlm 14114 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g
 ) >. ) )
 
Definitiondf-zn 14115* Define the ring of integers  mod  n. This is literally the quotient ring of  ZZ by the ideal  n ZZ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
 z  /.s  ( z ~QG  ( (RSpan `  z
 ) `  { n } ) ) ) 
 /  s ]_ (
 s sSet  <. ( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |` 
 if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
 <_  )  o.  `' f
 ) >. ) )
 
Theoremzrhval 14116 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  L  =  U. (ring RingHom  R )
 
Theoremzrhvalg 14117 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  =  U. (ring RingHom  R ) )
 
Theoremzrhval2 14118* Alternate value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  L  =  ( n  e. 
 ZZ  |->  ( n  .x.  .1.  ) ) )
 
Theoremzrhmulg 14119 Value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  N  e.  ZZ )  ->  ( L `  N )  =  ( N  .x.  .1.  ) )
 
Theoremzrhex 14120 Set existence for  ZRHom. (Contributed by Jim Kingdon, 19-May-2025.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  e.  _V )
 
Theoremzrhrhmb 14121 The  ZRHom homomorphism is the unique ring homomorphism from  ZZ. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  ( F  e.  (ring RingHom  R )  <->  F  =  L )
 )
 
Theoremzrhrhm 14122 The  ZRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  L  e.  (ring RingHom  R ) )
 
Theoremzrh1 14123 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  1 )  =  .1.  )
 
Theoremzrh0 14124 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  0 )  =  .0.  )
 
Theoremzrhpropd 14125* The  ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( ZRHom `  K )  =  ( ZRHom `  L ) )
 
Theoremzlmval 14126 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. ) )
 
Theoremzlmlemg 14127 Lemma for zlmbasg 14128 and zlmplusgg 14129. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
Theoremzlmbasg 14128 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
Theoremzlmplusgg 14129 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
Theoremzlmmulrg 14130 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
Theoremzlmsca 14131 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
Theoremzlmvscag 14132 Scalar multiplication operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .s
 `  W ) )
 
Theoremznlidl 14133 The set  n ZZ is an ideal in  ZZ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   =>    |-  ( N  e.  ZZ  ->  ( S `  { N } )  e.  (LIdeal ` ring ) )
 
Theoremzncrng2 14134 Making a commutative ring as a quotient of  ZZ and 
n ZZ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   =>    |-  ( N  e.  ZZ  ->  U  e.  CRing )
 
Theoremznval 14135 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznle 14136 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
 
Theoremznval2 14137 Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznbaslemnn 14138 Lemma for znbas 14143. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  ( le `  ndx )   =>    |-  ( N  e.  NN0  ->  ( E `  U )  =  ( E `  Y ) )
 
Theoremznbas2 14139 The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( Base `  U )  =  ( Base `  Y )
 )
 
Theoremznadd 14140 The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( +g  `  U )  =  ( +g  `  Y ) )
 
Theoremznmul 14141 The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( .r `  U )  =  ( .r `  Y ) )
 
Theoremznzrh 14142 The  ZZ ring homomorphism of ℤ/nℤ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( ZRHom `  U )  =  ( ZRHom `  Y ) )
 
Theoremznbas 14143 The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  Y  =  (ℤ/n `  N )   &    |-  R  =  (ring ~QG  ( S `
  { N }
 ) )   =>    |-  ( N  e.  NN0  ->  ( ZZ /. R )  =  ( Base `  Y ) )
 
Theoremzncrng 14144 ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  Y  e.  CRing )
 
Theoremznzrh2 14145* The  ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  .~  =  (ring ~QG  ( S `  { N }
 ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( N  e.  NN0  ->  L  =  ( x  e.  ZZ  |->  [ x ]  .~  )
 )
 
Theoremznzrhval 14146 The  ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  .~  =  (ring ~QG  ( S `  { N }
 ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  (
 ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A )  =  [ A ]  .~  )
 
Theoremznzrhfo 14147 The  ZZ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
 
Theoremzndvds 14148 Express equality of equivalence classes in  ZZ 
/  n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( L `  A )  =  ( L `  B )  <->  N  ||  ( A  -  B ) ) )
 
Theoremzndvds0 14149 Special case of zndvds 14148 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   &    |-  .0.  =  ( 0g `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  =  .0.  <->  N  ||  A ) )
 
Theoremznf1o 14150 The function  F enumerates all equivalence classes in ℤ/nℤ for each  n. When  n  = 
0,  ZZ  /  0 ZZ  =  ZZ  /  {
0 }  ~~  ZZ so we let  W  =  ZZ; otherwise  W  =  { 0 , 
... ,  n  - 
1 } enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   =>    |-  ( N  e.  NN0  ->  F : W -1-1-onto-> B )
 
Theoremznle2 14151 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
 
Theoremznleval 14152 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   &    |-  X  =  ( Base `  Y )   =>    |-  ( N  e.  NN0  ->  ( A  .<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
 
Theoremznleval2 14153 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   &    |-  X  =  ( Base `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .<_  B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
 
Theoremznfi 14154 The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   =>    |-  ( N  e.  NN  ->  B  e.  Fin )
 
Theoremznhash 14155 The ℤ/nℤ structure has  n elements. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   =>    |-  ( N  e.  NN  ->  ( `  B )  =  N )
 
Theoremznidom 14156 The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  Prime  ->  Y  e. IDomn )
 
Theoremznidomb 14157 The ℤ/nℤ structure is a domain precisely when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )
 
Theoremznunit 14158 The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  U  =  (Unit `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  (
 ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
 
Theoremznrrg 14159 The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for  N  =  0, where all nonzero integers are regular, but only  pm 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  U  =  (Unit `  Y )   &    |-  E  =  (RLReg `  Y )   =>    |-  ( N  e.  NN  ->  E  =  U )
 
PART 8  BASIC LINEAR ALGEBRA

According to Wikipedia ("Linear algebra", 03-Mar-2019, https://en.wikipedia.org/wiki/Linear_algebra) "Linear algebra is the branch of mathematics concerning linear equations [...], linear functions [...] and their representations through matrices and vector spaces." Or according to the Merriam-Webster dictionary ("linear algebra", 12-Mar-2019, https://www.merriam-webster.com/dictionary/linear%20algebra) "Definition of linear algebra: a branch of mathematics that is concerned with mathematical structures closed under the operations of addition and scalar multiplication and that includes the theory of systems of linear equations, matrices, determinants, vector spaces, and linear transformations." Dealing with modules (over rings) instead of vector spaces (over fields) allows for a more unified approach. Therefore, linear equations, matrices, determinants, are usually regarded as "over a ring" in this part.

Unless otherwise stated, the rings of scalars need not be commutative (see df-cring 13498), but the existence of a unity element is always assumed (our rings are unital, see df-ring 13497).

For readers knowing vector spaces but unfamiliar with modules: the elements of a module are still called "vectors" and they still form a group under addition, with a zero vector as neutral element, like in a vector space. Like in a vector space, vectors can be multiplied by scalars, with the usual rules, the only difference being that the scalars are only required to form a ring, and not necessarily a field or a division ring. Note that any vector space is a (special kind of) module, so any theorem proved below for modules applies to any vector space.

 
8.1  Abstract multivariate polynomials
 
8.1.1  Definition and basic properties
 
Syntaxcmps 14160 Multivariate power series.
 class mPwSer
 
Definitiondf-psr 14161* Define the algebra of power series over the index set  i and with coefficients from the ring  r. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- mPwSer  =  ( i  e.  _V ,  r  e.  _V  |->  [_
 { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin } 
 /  d ]_ [_ (
 ( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base ` 
 ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r
 )  |`  ( b  X.  b ) ) >. , 
 <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
 `  r ) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  r >. , 
 <. ( .s `  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
 ( TopOpen `  r ) } ) ) >. } ) )
 
Theoremreldmpsr 14162 The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- 
 Rel  dom mPwSer
 
Theorempsrval 14163* Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  O  =  ( TopOpen `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  ( ph  ->  B  =  ( K  ^m  D ) )   &    |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )   &    |-  .X. 
 =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  ( g `
  ( k  oF  -  x ) ) ) ) ) ) )   &    |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f ) )   &    |-  ( ph  ->  J  =  (
 Xt_ `  ( D  X.  { O } )
 ) )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R  e.  X )   =>    |-  ( ph  ->  S  =  ( { <. ( Base ` 
 ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s
 `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. } ) )
 
Theoremfnpsr 14164 The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
 |- mPwSer  Fn  ( _V  X.  _V )
 
Theorempsrvalstrd 14165 The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  .+  e.  Y )   &    |-  ( ph  ->  .X.  e.  Z )   &    |-  ( ph  ->  R  e.  W )   &    |-  ( ph  ->  .x. 
 e.  P )   &    |-  ( ph  ->  J  e.  Q )   =>    |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. (TopSet `  ndx ) ,  J >. } ) Struct  <. 1 ,  9 >. )
 
Theorempsrbag 14166* Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
 
Theorempsrbagf 14167* A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( F  e.  D  ->  F : I --> NN0 )
 
Theoremfczpsrbag 14168* The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  V  ->  ( x  e.  I  |->  0 )  e.  D )
 
Theorempsrbaglesuppg 14169* The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F ) ) 
 ->  ( `' G " NN )  C_  ( `' F " NN )
 )
 
Theorempsrbasg 14170* The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  W )   =>    |-  ( ph  ->  B  =  ( K  ^m  D ) )
 
Theorempsrelbas 14171* An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : D --> K )
 
Theorempsrelbasfun 14172 An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   =>    |-  ( X  e.  B  ->  Fun  X )
 
Theorempsrplusgg 14173 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  S )   =>    |-  (
 ( I  e.  V  /\  R  e.  W ) 
 ->  .+b  =  (  oF  .+  |`  ( B  X.  B ) ) )
 
Theorempsradd 14174 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  S )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+b  Y )  =  ( X  oF  .+  Y ) )
 
Theorempsraddcl 14175 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  ( ph  ->  R  e. Mgm )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
PART 9  BASIC TOPOLOGY
 
9.1  Topology
 
9.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
9.1.1.1  Topologies
 
Syntaxctop 14176 Syntax for the class of topologies.
 class  Top
 
Definitiondf-top 14177* Define the class of topologies. It is a proper class. See istopg 14178 and istopfin 14179 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

 |- 
 Top  =  { x  |  ( A. y  e. 
 ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x ) }
 
Theoremistopg 14178* Express the predicate " J is a topology". See istopfin 14179 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use  T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

 |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J ) ) )
 
Theoremistopfin 14179* Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14178. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
 |-  ( J  e.  Top  ->  ( A. x ( x 
 C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
 C_  J  /\  x  =/= 
 (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
 
Theoremuniopn 14180 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremiunopn 14181* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  -> 
 U_ x  e.  A  B  e.  J )
 
Theoreminopn 14182 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B )  e.  J )
 
Theoremfiinopn 14183 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
 |-  ( J  e.  Top  ->  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )
 
Theoremunopn 14184 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B )  e.  J )
 
Theorem0opn 14185 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  J )
 
Theorem0ntop 14186 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
 |- 
 -.  (/)  e.  Top
 
Theoremtopopn 14187 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  X  e.  J )
 
Theoremeltopss 14188 A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  J ) 
 ->  A  C_  X )
 
9.1.1.2  Topologies on sets
 
Syntaxctopon 14189 Syntax for the function of topologies on sets.
 class TopOn
 
Definitiondf-topon 14190* Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.)
 |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  |  b  =  U. j }
 )
 
Theoremfuntopon 14191 The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
 |- 
 Fun TopOn
 
Theoremistopon 14192 Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  <->  ( J  e.  Top  /\  B  =  U. J ) )
 
Theoremtopontop 14193 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  J  e.  Top )
 
Theoremtoponuni 14194 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  B  =  U. J )
 
Theoremtopontopi 14195 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  J  e.  (TopOn `  B )   =>    |-  J  e.  Top
 
Theoremtoponunii 14196 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  J  e.  (TopOn `  B )   =>    |-  B  =  U. J
 
Theoremtoptopon 14197 Alternative definition of  Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
 
Theoremtoptopon2 14198 A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
 |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
 
Theoremtopontopon 14199 A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
 |-  ( J  e.  (TopOn `  X )  ->  J  e.  (TopOn `  U. J ) )
 
Theoremtoponrestid 14200 Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
 |-  A  e.  (TopOn `  B )   =>    |-  A  =  ( At  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15644
  Copyright terms: Public domain < Previous  Next >