ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rab Unicode version

Theorem ss2rab 3229
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 2462 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2462 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2sseq12i 3181 . 2  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<->  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } )
4 ss2ab 3221 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } 
<-> 
A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
5 df-ral 2458 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
6 imdistan 444 . . . 4  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
76albii 1468 . . 3  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
85, 7bitr2i 185 . 2  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  <->  A. x  e.  A  ( ph  ->  ps )
)
93, 4, 83bitri 206 1  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    e. wcel 2146   {cab 2161   A.wral 2453   {crab 2457    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rab 2462  df-in 3133  df-ss 3140
This theorem is referenced by:  ss2rabdv  3234  ss2rabi  3235
  Copyright terms: Public domain W3C validator