ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rab Unicode version

Theorem ss2rab 3273
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 2494 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2494 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2sseq12i 3225 . 2  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<->  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } )
4 ss2ab 3265 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } 
<-> 
A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
5 df-ral 2490 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
6 imdistan 444 . . . 4  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
76albii 1494 . . 3  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
85, 7bitr2i 185 . 2  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  <->  A. x  e.  A  ( ph  ->  ps )
)
93, 4, 83bitri 206 1  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    e. wcel 2177   {cab 2192   A.wral 2485   {crab 2489    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-in 3176  df-ss 3183
This theorem is referenced by:  ss2rabdv  3278  ss2rabi  3279
  Copyright terms: Public domain W3C validator