ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct Unicode version

Theorem unct 11954
Description: The union of two countable sets is countable. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct  |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
Distinct variable groups:    A, f, g, h    B, f, g, h

Proof of Theorem unct
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6417 . . . . . . . 8  |-  2o  e.  om
2 nnfi 6766 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
3 finct 7001 . . . . . . . 8  |-  ( 2o  e.  Fin  ->  E. j 
j : om -onto-> ( 2o 1o ) )
41, 2, 3mp2b 8 . . . . . . 7  |-  E. j 
j : om -onto-> ( 2o 1o )
54a1i 9 . . . . . 6  |-  ( ( f : om -onto-> ( A 1o )  /\  g : om -onto-> ( B 1o ) )  ->  E. j 
j : om -onto-> ( 2o 1o ) )
6 simpr 109 . . . . . . . . 9  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  j : om -onto-> ( 2o 1o ) )
7 df2o3 6327 . . . . . . . . . 10  |-  2o  =  { (/) ,  1o }
8 djueq1 6925 . . . . . . . . . 10  |-  ( 2o  =  { (/) ,  1o }  ->  ( 2o 1o )  =  ( { (/) ,  1o } 1o )
)
9 foeq3 5343 . . . . . . . . . 10  |-  ( ( 2o 1o )  =  ( { (/) ,  1o } 1o )  ->  ( j : om -onto-> ( 2o 1o )  <-> 
j : om -onto-> ( { (/) ,  1o } 1o ) ) )
107, 8, 9mp2b 8 . . . . . . . . 9  |-  ( j : om -onto-> ( 2o 1o )  <->  j : om -onto->
( { (/) ,  1o } 1o ) )
116, 10sylib 121 . . . . . . . 8  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  j : om -onto-> ( { (/) ,  1o } 1o )
)
12 simplll 522 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  f : om -onto-> ( A 1o ) )
13 iftrue 3479 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  f ,  g )  =  f )
14 eqidd 2140 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  om  =  om )
15 iftrue 3479 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  A ,  B )  =  A )
16 djueq1 6925 . . . . . . . . . . . . . . 15  |-  ( if ( x  =  (/) ,  A ,  B )  =  A  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( A 1o ) )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( A 1o ) )
1813, 14, 17foeq123d 5361 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  f : om -onto->
( A 1o )
) )
1918adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  f : om -onto->
( A 1o )
) )
2012, 19mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
2120ex 114 . . . . . . . . . 10  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
x  =  (/)  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
22 simpllr 523 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  g : om -onto-> ( B 1o ) )
23 1n0 6329 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
2423neii 2310 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
25 eqeq1 2146 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  (
x  =  (/)  <->  1o  =  (/) ) )
2624, 25mtbiri 664 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  -.  x  =  (/) )
2726adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  -.  x  =  (/) )
28 iffalse 3482 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  if ( x  =  (/) ,  f ,  g )  =  g )
29 eqidd 2140 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  om  =  om )
30 iffalse 3482 . . . . . . . . . . . . . . 15  |-  ( -.  x  =  (/)  ->  if ( x  =  (/) ,  A ,  B )  =  B )
31 djueq1 6925 . . . . . . . . . . . . . . 15  |-  ( if ( x  =  (/) ,  A ,  B )  =  B  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( B 1o ) )
3230, 31syl 14 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( B 1o ) )
3328, 29, 32foeq123d 5361 . . . . . . . . . . . . 13  |-  ( -.  x  =  (/)  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  g : om -onto->
( B 1o )
) )
3427, 33syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  g : om -onto->
( B 1o )
) )
3522, 34mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
3635ex 114 . . . . . . . . . 10  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
x  =  1o  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
3721, 36jaod 706 . . . . . . . . 9  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
( x  =  (/)  \/  x  =  1o )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto->
( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
38 elpri 3550 . . . . . . . . 9  |-  ( x  e.  { (/) ,  1o }  ->  ( x  =  (/)  \/  x  =  1o ) )
3937, 38impel 278 . . . . . . . 8  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  e. 
{ (/) ,  1o }
)  ->  if (
x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
4011, 39ctiunct 11953 . . . . . . 7  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  E. h  h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
) 1o ) )
41 0lt2o 6338 . . . . . . . . . 10  |-  (/)  e.  2o
42 1lt2o 6339 . . . . . . . . . 10  |-  1o  e.  2o
4326iffalsed 3484 . . . . . . . . . . 11  |-  ( x  =  1o  ->  if ( x  =  (/) ,  A ,  B )  =  B )
4415, 43iunxprg 3893 . . . . . . . . . 10  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B )  =  ( A  u.  B ) )
4541, 42, 44mp2an 422 . . . . . . . . 9  |-  U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B )  =  ( A  u.  B )
46 djueq1 6925 . . . . . . . . 9  |-  ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
)  =  ( A  u.  B )  -> 
( U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  =  ( ( A  u.  B ) 1o ) )
47 foeq3 5343 . . . . . . . . 9  |-  ( (
U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  =  ( ( A  u.  B ) 1o )  ->  ( h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  <->  h : om -onto->
( ( A  u.  B ) 1o ) ) )
4845, 46, 47mp2b 8 . . . . . . . 8  |-  ( h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
) 1o )  <->  h : om -onto-> ( ( A  u.  B ) 1o ) )
4948exbii 1584 . . . . . . 7  |-  ( E. h  h : om -onto->
( U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  <->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
5040, 49sylib 121 . . . . . 6  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
515, 50exlimddv 1870 . . . . 5  |-  ( ( f : om -onto-> ( A 1o )  /\  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
5251ex 114 . . . 4  |-  ( f : om -onto-> ( A 1o )  ->  ( g : om -onto-> ( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5352exlimiv 1577 . . 3  |-  ( E. f  f : om -onto->
( A 1o )  ->  ( g : om -onto->
( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5453exlimdv 1791 . 2  |-  ( E. f  f : om -onto->
( A 1o )  ->  ( E. g  g : om -onto-> ( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5554imp 123 1  |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331   E.wex 1468    e. wcel 1480    u. cun 3069   (/)c0 3363   ifcif 3474   {cpr 3528   U_ciun 3813   omcom 4504   -onto->wfo 5121   1oc1o 6306   2oc2o 6307   Fincfn 6634   ⊔ cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-fin 6637  df-dju 6923  df-inl 6932  df-inr 6933  df-case 6969  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-dvds 11494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator