ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct Unicode version

Theorem unct 12898
Description: The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct  |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
Distinct variable groups:    A, f, g, h    B, f, g, h

Proof of Theorem unct
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6625 . . . . . . . 8  |-  2o  e.  om
2 nnfi 6990 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
3 finct 7239 . . . . . . . 8  |-  ( 2o  e.  Fin  ->  E. j 
j : om -onto-> ( 2o 1o ) )
41, 2, 3mp2b 8 . . . . . . 7  |-  E. j 
j : om -onto-> ( 2o 1o )
54a1i 9 . . . . . 6  |-  ( ( f : om -onto-> ( A 1o )  /\  g : om -onto-> ( B 1o ) )  ->  E. j 
j : om -onto-> ( 2o 1o ) )
6 simpr 110 . . . . . . . . 9  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  j : om -onto-> ( 2o 1o ) )
7 df2o3 6534 . . . . . . . . . 10  |-  2o  =  { (/) ,  1o }
8 djueq1 7163 . . . . . . . . . 10  |-  ( 2o  =  { (/) ,  1o }  ->  ( 2o 1o )  =  ( { (/) ,  1o } 1o )
)
9 foeq3 5513 . . . . . . . . . 10  |-  ( ( 2o 1o )  =  ( { (/) ,  1o } 1o )  ->  ( j : om -onto-> ( 2o 1o )  <-> 
j : om -onto-> ( { (/) ,  1o } 1o ) ) )
107, 8, 9mp2b 8 . . . . . . . . 9  |-  ( j : om -onto-> ( 2o 1o )  <->  j : om -onto->
( { (/) ,  1o } 1o ) )
116, 10sylib 122 . . . . . . . 8  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  j : om -onto-> ( { (/) ,  1o } 1o )
)
12 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  f : om -onto-> ( A 1o ) )
13 iftrue 3580 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  f ,  g )  =  f )
14 eqidd 2207 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  om  =  om )
15 iftrue 3580 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  A ,  B )  =  A )
16 djueq1 7163 . . . . . . . . . . . . . . 15  |-  ( if ( x  =  (/) ,  A ,  B )  =  A  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( A 1o ) )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( A 1o ) )
1813, 14, 17foeq123d 5532 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  f : om -onto->
( A 1o )
) )
1918adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  f : om -onto->
( A 1o )
) )
2012, 19mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
2120ex 115 . . . . . . . . . 10  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
x  =  (/)  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
22 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  g : om -onto-> ( B 1o ) )
23 1n0 6536 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
2423neii 2379 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
25 eqeq1 2213 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  (
x  =  (/)  <->  1o  =  (/) ) )
2624, 25mtbiri 677 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  -.  x  =  (/) )
2726adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  -.  x  =  (/) )
28 iffalse 3583 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  if ( x  =  (/) ,  f ,  g )  =  g )
29 eqidd 2207 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  om  =  om )
30 iffalse 3583 . . . . . . . . . . . . . . 15  |-  ( -.  x  =  (/)  ->  if ( x  =  (/) ,  A ,  B )  =  B )
31 djueq1 7163 . . . . . . . . . . . . . . 15  |-  ( if ( x  =  (/) ,  A ,  B )  =  B  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( B 1o ) )
3230, 31syl 14 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( B 1o ) )
3328, 29, 32foeq123d 5532 . . . . . . . . . . . . 13  |-  ( -.  x  =  (/)  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  g : om -onto->
( B 1o )
) )
3427, 33syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  g : om -onto->
( B 1o )
) )
3522, 34mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
3635ex 115 . . . . . . . . . 10  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
x  =  1o  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
3721, 36jaod 719 . . . . . . . . 9  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
( x  =  (/)  \/  x  =  1o )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto->
( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
38 elpri 3661 . . . . . . . . 9  |-  ( x  e.  { (/) ,  1o }  ->  ( x  =  (/)  \/  x  =  1o ) )
3937, 38impel 280 . . . . . . . 8  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  e. 
{ (/) ,  1o }
)  ->  if (
x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
4011, 39ctiunct 12896 . . . . . . 7  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  E. h  h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
) 1o ) )
41 0lt2o 6545 . . . . . . . . . 10  |-  (/)  e.  2o
42 1lt2o 6546 . . . . . . . . . 10  |-  1o  e.  2o
4326iffalsed 3585 . . . . . . . . . . 11  |-  ( x  =  1o  ->  if ( x  =  (/) ,  A ,  B )  =  B )
4415, 43iunxprg 4017 . . . . . . . . . 10  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B )  =  ( A  u.  B ) )
4541, 42, 44mp2an 426 . . . . . . . . 9  |-  U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B )  =  ( A  u.  B )
46 djueq1 7163 . . . . . . . . 9  |-  ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
)  =  ( A  u.  B )  -> 
( U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  =  ( ( A  u.  B ) 1o ) )
47 foeq3 5513 . . . . . . . . 9  |-  ( (
U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  =  ( ( A  u.  B ) 1o )  ->  ( h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  <->  h : om -onto->
( ( A  u.  B ) 1o ) ) )
4845, 46, 47mp2b 8 . . . . . . . 8  |-  ( h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
) 1o )  <->  h : om -onto-> ( ( A  u.  B ) 1o ) )
4948exbii 1629 . . . . . . 7  |-  ( E. h  h : om -onto->
( U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  <->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
5040, 49sylib 122 . . . . . 6  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
515, 50exlimddv 1923 . . . . 5  |-  ( ( f : om -onto-> ( A 1o )  /\  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
5251ex 115 . . . 4  |-  ( f : om -onto-> ( A 1o )  ->  ( g : om -onto-> ( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5352exlimiv 1622 . . 3  |-  ( E. f  f : om -onto->
( A 1o )  ->  ( g : om -onto->
( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5453exlimdv 1843 . 2  |-  ( E. f  f : om -onto->
( A 1o )  ->  ( E. g  g : om -onto-> ( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5554imp 124 1  |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177    u. cun 3168   (/)c0 3464   ifcif 3575   {cpr 3639   U_ciun 3936   omcom 4651   -onto->wfo 5283   1oc1o 6513   2oc2o 6514   Fincfn 6845   ⊔ cdju 7160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-fin 6848  df-dju 7161  df-inl 7170  df-inr 7171  df-case 7207  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-dvds 12184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator