ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct Unicode version

Theorem unct 11991
Description: The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct  |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
Distinct variable groups:    A, f, g, h    B, f, g, h

Proof of Theorem unct
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6425 . . . . . . . 8  |-  2o  e.  om
2 nnfi 6774 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
3 finct 7009 . . . . . . . 8  |-  ( 2o  e.  Fin  ->  E. j 
j : om -onto-> ( 2o 1o ) )
41, 2, 3mp2b 8 . . . . . . 7  |-  E. j 
j : om -onto-> ( 2o 1o )
54a1i 9 . . . . . 6  |-  ( ( f : om -onto-> ( A 1o )  /\  g : om -onto-> ( B 1o ) )  ->  E. j 
j : om -onto-> ( 2o 1o ) )
6 simpr 109 . . . . . . . . 9  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  j : om -onto-> ( 2o 1o ) )
7 df2o3 6335 . . . . . . . . . 10  |-  2o  =  { (/) ,  1o }
8 djueq1 6933 . . . . . . . . . 10  |-  ( 2o  =  { (/) ,  1o }  ->  ( 2o 1o )  =  ( { (/) ,  1o } 1o )
)
9 foeq3 5351 . . . . . . . . . 10  |-  ( ( 2o 1o )  =  ( { (/) ,  1o } 1o )  ->  ( j : om -onto-> ( 2o 1o )  <-> 
j : om -onto-> ( { (/) ,  1o } 1o ) ) )
107, 8, 9mp2b 8 . . . . . . . . 9  |-  ( j : om -onto-> ( 2o 1o )  <->  j : om -onto->
( { (/) ,  1o } 1o ) )
116, 10sylib 121 . . . . . . . 8  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  j : om -onto-> ( { (/) ,  1o } 1o )
)
12 simplll 523 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  f : om -onto-> ( A 1o ) )
13 iftrue 3484 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  f ,  g )  =  f )
14 eqidd 2141 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  om  =  om )
15 iftrue 3484 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  A ,  B )  =  A )
16 djueq1 6933 . . . . . . . . . . . . . . 15  |-  ( if ( x  =  (/) ,  A ,  B )  =  A  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( A 1o ) )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( A 1o ) )
1813, 14, 17foeq123d 5369 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  f : om -onto->
( A 1o )
) )
1918adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  f : om -onto->
( A 1o )
) )
2012, 19mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  (/) )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
2120ex 114 . . . . . . . . . 10  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
x  =  (/)  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
22 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  g : om -onto-> ( B 1o ) )
23 1n0 6337 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
2423neii 2311 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
25 eqeq1 2147 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  (
x  =  (/)  <->  1o  =  (/) ) )
2624, 25mtbiri 665 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  -.  x  =  (/) )
2726adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  -.  x  =  (/) )
28 iffalse 3487 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  if ( x  =  (/) ,  f ,  g )  =  g )
29 eqidd 2141 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  om  =  om )
30 iffalse 3487 . . . . . . . . . . . . . . 15  |-  ( -.  x  =  (/)  ->  if ( x  =  (/) ,  A ,  B )  =  B )
31 djueq1 6933 . . . . . . . . . . . . . . 15  |-  ( if ( x  =  (/) ,  A ,  B )  =  B  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( B 1o ) )
3230, 31syl 14 . . . . . . . . . . . . . 14  |-  ( -.  x  =  (/)  ->  ( if ( x  =  (/) ,  A ,  B ) 1o )  =  ( B 1o ) )
3328, 29, 32foeq123d 5369 . . . . . . . . . . . . 13  |-  ( -.  x  =  (/)  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  g : om -onto->
( B 1o )
) )
3427, 33syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  ( if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o )  <->  g : om -onto->
( B 1o )
) )
3522, 34mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  =  1o )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
3635ex 114 . . . . . . . . . 10  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
x  =  1o  ->  if ( x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
3721, 36jaod 707 . . . . . . . . 9  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  (
( x  =  (/)  \/  x  =  1o )  ->  if ( x  =  (/) ,  f ,  g ) : om -onto->
( if ( x  =  (/) ,  A ,  B ) 1o ) ) )
38 elpri 3555 . . . . . . . . 9  |-  ( x  e.  { (/) ,  1o }  ->  ( x  =  (/)  \/  x  =  1o ) )
3937, 38impel 278 . . . . . . . 8  |-  ( ( ( ( f : om -onto-> ( A 1o )  /\  g : om -onto->
( B 1o )
)  /\  j : om -onto-> ( 2o 1o ) )  /\  x  e. 
{ (/) ,  1o }
)  ->  if (
x  =  (/) ,  f ,  g ) : om -onto-> ( if ( x  =  (/) ,  A ,  B ) 1o ) )
4011, 39ctiunct 11989 . . . . . . 7  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  E. h  h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
) 1o ) )
41 0lt2o 6346 . . . . . . . . . 10  |-  (/)  e.  2o
42 1lt2o 6347 . . . . . . . . . 10  |-  1o  e.  2o
4326iffalsed 3489 . . . . . . . . . . 11  |-  ( x  =  1o  ->  if ( x  =  (/) ,  A ,  B )  =  B )
4415, 43iunxprg 3901 . . . . . . . . . 10  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B )  =  ( A  u.  B ) )
4541, 42, 44mp2an 423 . . . . . . . . 9  |-  U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B )  =  ( A  u.  B )
46 djueq1 6933 . . . . . . . . 9  |-  ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
)  =  ( A  u.  B )  -> 
( U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  =  ( ( A  u.  B ) 1o ) )
47 foeq3 5351 . . . . . . . . 9  |-  ( (
U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  =  ( ( A  u.  B ) 1o )  ->  ( h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  <->  h : om -onto->
( ( A  u.  B ) 1o ) ) )
4845, 46, 47mp2b 8 . . . . . . . 8  |-  ( h : om -onto-> ( U_ x  e.  { (/) ,  1o } if ( x  =  (/) ,  A ,  B
) 1o )  <->  h : om -onto-> ( ( A  u.  B ) 1o ) )
4948exbii 1585 . . . . . . 7  |-  ( E. h  h : om -onto->
( U_ x  e.  { (/)
,  1o } if ( x  =  (/) ,  A ,  B ) 1o )  <->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
5040, 49sylib 121 . . . . . 6  |-  ( ( ( f : om -onto->
( A 1o )  /\  g : om -onto-> ( B 1o ) )  /\  j : om -onto-> ( 2o 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
515, 50exlimddv 1871 . . . . 5  |-  ( ( f : om -onto-> ( A 1o )  /\  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
5251ex 114 . . . 4  |-  ( f : om -onto-> ( A 1o )  ->  ( g : om -onto-> ( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5352exlimiv 1578 . . 3  |-  ( E. f  f : om -onto->
( A 1o )  ->  ( g : om -onto->
( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5453exlimdv 1792 . 2  |-  ( E. f  f : om -onto->
( A 1o )  ->  ( E. g  g : om -onto-> ( B 1o )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) ) )
5554imp 123 1  |-  ( ( E. f  f : om -onto-> ( A 1o )  /\  E. g  g : om -onto-> ( B 1o ) )  ->  E. h  h : om -onto-> ( ( A  u.  B ) 1o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332   E.wex 1469    e. wcel 1481    u. cun 3074   (/)c0 3368   ifcif 3479   {cpr 3533   U_ciun 3821   omcom 4512   -onto->wfo 5129   1oc1o 6314   2oc2o 6315   Fincfn 6642   ⊔ cdju 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-fin 6645  df-dju 6931  df-inl 6940  df-inr 6941  df-case 6977  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-dvds 11530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator