ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finomni Unicode version

Theorem finomni 7012
Description: A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
Assertion
Ref Expression
finomni  |-  ( A  e.  Fin  ->  A  e. Omni )

Proof of Theorem finomni
Dummy variables  w  y  z  f  g  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . 2  |-  ( w  =  (/)  ->  ( w  e. Omni 
<->  (/)  e. Omni ) )
2 eleq1 2202 . 2  |-  ( w  =  y  ->  (
w  e. Omni  <->  y  e. Omni )
)
3 eleq1 2202 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  e. Omni  <->  ( y  u.  { z } )  e. Omni )
)
4 eleq1 2202 . 2  |-  ( w  =  A  ->  (
w  e. Omni  <->  A  e. Omni ) )
5 0ex 4055 . . . 4  |-  (/)  e.  _V
6 isomni 7008 . . . 4  |-  ( (/)  e.  _V  ->  ( (/)  e. Omni  <->  A. f
( f : (/) --> 2o 
->  ( E. x  e.  (/)  ( f `  x
)  =  (/)  \/  A. x  e.  (/)  ( f `
 x )  =  1o ) ) ) )
75, 6ax-mp 5 . . 3  |-  ( (/)  e. Omni  <->  A. f ( f :
(/) --> 2o  ->  ( E. x  e.  (/)  ( f `
 x )  =  (/)  \/  A. x  e.  (/)  ( f `  x
)  =  1o ) ) )
8 ral0 3464 . . . . 5  |-  A. x  e.  (/)  ( f `  x )  =  1o
98olci 721 . . . 4  |-  ( E. x  e.  (/)  ( f `
 x )  =  (/)  \/  A. x  e.  (/)  ( f `  x
)  =  1o )
109a1i 9 . . 3  |-  ( f : (/) --> 2o  ->  ( E. x  e.  (/)  ( f `
 x )  =  (/)  \/  A. x  e.  (/)  ( f `  x
)  =  1o ) )
117, 10mpgbir 1429 . 2  |-  (/)  e. Omni
12 elun1 3243 . . . . . . . . . . . 12  |-  ( x  e.  y  ->  x  e.  ( y  u.  {
z } ) )
1312ad2antlr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  x  e.  y )  /\  (
( g  |`  y
) `  x )  =  (/) )  ->  x  e.  ( y  u.  {
z } ) )
14 fvres 5445 . . . . . . . . . . . . 13  |-  ( x  e.  y  ->  (
( g  |`  y
) `  x )  =  ( g `  x ) )
1514ad2antlr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  x  e.  y )  /\  (
( g  |`  y
) `  x )  =  (/) )  ->  (
( g  |`  y
) `  x )  =  ( g `  x ) )
16 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  x  e.  y )  /\  (
( g  |`  y
) `  x )  =  (/) )  ->  (
( g  |`  y
) `  x )  =  (/) )
1715, 16eqtr3d 2174 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  x  e.  y )  /\  (
( g  |`  y
) `  x )  =  (/) )  ->  (
g `  x )  =  (/) )
18 fveq2 5421 . . . . . . . . . . . . 13  |-  ( u  =  x  ->  (
g `  u )  =  ( g `  x ) )
1918eqeq1d 2148 . . . . . . . . . . . 12  |-  ( u  =  x  ->  (
( g `  u
)  =  (/)  <->  ( g `  x )  =  (/) ) )
2019rspcev 2789 . . . . . . . . . . 11  |-  ( ( x  e.  ( y  u.  { z } )  /\  ( g `
 x )  =  (/) )  ->  E. u  e.  ( y  u.  {
z } ) ( g `  u )  =  (/) )
2113, 17, 20syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  x  e.  y )  /\  (
( g  |`  y
) `  x )  =  (/) )  ->  E. u  e.  ( y  u.  {
z } ) ( g `  u )  =  (/) )
2221orcd 722 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  x  e.  y )  /\  (
( g  |`  y
) `  x )  =  (/) )  ->  ( E. u  e.  (
y  u.  { z } ) ( g `
 u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) )
2322ex 114 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  y  e. Omni )  /\  g : ( y  u.  { z } ) --> 2o )  /\  x  e.  y )  ->  ( (
( g  |`  y
) `  x )  =  (/)  ->  ( E. u  e.  ( y  u.  { z } ) ( g `  u
)  =  (/)  \/  A. u  e.  ( y  u.  { z } ) ( g `  u
)  =  1o ) ) )
2423rexlimdva 2549 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  ( E. x  e.  y 
( ( g  |`  y ) `  x
)  =  (/)  ->  ( E. u  e.  (
y  u.  { z } ) ( g `
 u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) ) )
25 vsnid 3557 . . . . . . . . . . . . 13  |-  z  e. 
{ z }
26 elun2 3244 . . . . . . . . . . . . 13  |-  ( z  e.  { z }  ->  z  e.  ( y  u.  { z } ) )
2725, 26ax-mp 5 . . . . . . . . . . . 12  |-  z  e.  ( y  u.  {
z } )
2827a1i 9 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  z  e.  ( y  u.  {
z } ) )
29 fveq2 5421 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
g `  u )  =  ( g `  z ) )
3029eqeq1d 2148 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
( g `  u
)  =  (/)  <->  ( g `  z )  =  (/) ) )
3130rspcev 2789 . . . . . . . . . . 11  |-  ( ( z  e.  ( y  u.  { z } )  /\  ( g `
 z )  =  (/) )  ->  E. u  e.  ( y  u.  {
z } ) ( g `  u )  =  (/) )
3228, 31sylan 281 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
Fin  /\  y  e. Omni )  /\  g : ( y  u.  { z } ) --> 2o )  /\  ( g `  z )  =  (/) )  ->  E. u  e.  ( y  u.  { z } ) ( g `
 u )  =  (/) )
3332orcd 722 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  y  e. Omni )  /\  g : ( y  u.  { z } ) --> 2o )  /\  ( g `  z )  =  (/) )  ->  ( E. u  e.  ( y  u.  {
z } ) ( g `  u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) )
3433a1d 22 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  y  e. Omni )  /\  g : ( y  u.  { z } ) --> 2o )  /\  ( g `  z )  =  (/) )  ->  ( A. x  e.  y  ( (
g  |`  y ) `  x )  =  1o 
->  ( E. u  e.  ( y  u.  {
z } ) ( g `  u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) ) )
35 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  ( g `
 z )  =  1o )  /\  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o )  ->  A. x  e.  y  ( (
g  |`  y ) `  x )  =  1o )
36 fveq2 5421 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  (
( g  |`  y
) `  x )  =  ( ( g  |`  y ) `  u
) )
3736eqeq1d 2148 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
( ( g  |`  y ) `  x
)  =  1o  <->  ( (
g  |`  y ) `  u )  =  1o ) )
3837cbvralv 2654 . . . . . . . . . . . . 13  |-  ( A. x  e.  y  (
( g  |`  y
) `  x )  =  1o  <->  A. u  e.  y  ( ( g  |`  y ) `  u
)  =  1o )
39 fvres 5445 . . . . . . . . . . . . . . 15  |-  ( u  e.  y  ->  (
( g  |`  y
) `  u )  =  ( g `  u ) )
4039eqeq1d 2148 . . . . . . . . . . . . . 14  |-  ( u  e.  y  ->  (
( ( g  |`  y ) `  u
)  =  1o  <->  ( g `  u )  =  1o ) )
4140ralbiia 2449 . . . . . . . . . . . . 13  |-  ( A. u  e.  y  (
( g  |`  y
) `  u )  =  1o  <->  A. u  e.  y  ( g `  u
)  =  1o )
4238, 41bitri 183 . . . . . . . . . . . 12  |-  ( A. x  e.  y  (
( g  |`  y
) `  x )  =  1o  <->  A. u  e.  y  ( g `  u
)  =  1o )
4335, 42sylib 121 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  ( g `
 z )  =  1o )  /\  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o )  ->  A. u  e.  y  ( g `  u )  =  1o )
44 simplr 519 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  ( g `
 z )  =  1o )  /\  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o )  ->  (
g `  z )  =  1o )
45 vex 2689 . . . . . . . . . . . . 13  |-  z  e. 
_V
4629eqeq1d 2148 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
( g `  u
)  =  1o  <->  ( g `  z )  =  1o ) )
4745, 46ralsn 3567 . . . . . . . . . . . 12  |-  ( A. u  e.  { z }  ( g `  u )  =  1o  <->  ( g `  z )  =  1o )
4844, 47sylibr 133 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  ( g `
 z )  =  1o )  /\  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o )  ->  A. u  e.  { z }  (
g `  u )  =  1o )
49 ralun 3258 . . . . . . . . . . 11  |-  ( ( A. u  e.  y  ( g `  u
)  =  1o  /\  A. u  e.  { z }  ( g `  u )  =  1o )  ->  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o )
5043, 48, 49syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  ( g `
 z )  =  1o )  /\  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o )  ->  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o )
5150olcd 723 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u.  {
z } ) --> 2o )  /\  ( g `
 z )  =  1o )  /\  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o )  ->  ( E. u  e.  (
y  u.  { z } ) ( g `
 u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) )
5251ex 114 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  y  e. Omni )  /\  g : ( y  u.  { z } ) --> 2o )  /\  ( g `  z )  =  1o )  ->  ( A. x  e.  y  (
( g  |`  y
) `  x )  =  1o  ->  ( E. u  e.  ( y  u.  { z } ) ( g `  u )  =  (/)  \/ 
A. u  e.  ( y  u.  { z } ) ( g `
 u )  =  1o ) ) )
53 simpr 109 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  g : ( y  u. 
{ z } ) --> 2o )
5453, 28ffvelrnd 5556 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  (
g `  z )  e.  2o )
55 df2o3 6327 . . . . . . . . . 10  |-  2o  =  { (/) ,  1o }
5654, 55eleqtrdi 2232 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  (
g `  z )  e.  { (/) ,  1o }
)
57 elpri 3550 . . . . . . . . 9  |-  ( ( g `  z )  e.  { (/) ,  1o }  ->  ( ( g `
 z )  =  (/)  \/  ( g `  z )  =  1o ) )
5856, 57syl 14 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  (
( g `  z
)  =  (/)  \/  (
g `  z )  =  1o ) )
5934, 52, 58mpjaodan 787 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  ( A. x  e.  y 
( ( g  |`  y ) `  x
)  =  1o  ->  ( E. u  e.  ( y  u.  { z } ) ( g `
 u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) ) )
60 vex 2689 . . . . . . . . . . . 12  |-  y  e. 
_V
61 isomni 7008 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
y  e. Omni  <->  A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) ) )
6260, 61ax-mp 5 . . . . . . . . . . 11  |-  ( y  e. Omni 
<-> 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) )
6362biimpi 119 . . . . . . . . . 10  |-  ( y  e. Omni  ->  A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) )
6463adantl 275 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  y  e. Omni )  ->  A. f ( f : y --> 2o  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) )
65 vex 2689 . . . . . . . . . . 11  |-  g  e. 
_V
6665resex 4860 . . . . . . . . . 10  |-  ( g  |`  y )  e.  _V
67 feq1 5255 . . . . . . . . . . 11  |-  ( f  =  ( g  |`  y )  ->  (
f : y --> 2o  <->  ( g  |`  y ) : y --> 2o ) )
68 fveq1 5420 . . . . . . . . . . . . . 14  |-  ( f  =  ( g  |`  y )  ->  (
f `  x )  =  ( ( g  |`  y ) `  x
) )
6968eqeq1d 2148 . . . . . . . . . . . . 13  |-  ( f  =  ( g  |`  y )  ->  (
( f `  x
)  =  (/)  <->  ( (
g  |`  y ) `  x )  =  (/) ) )
7069rexbidv 2438 . . . . . . . . . . . 12  |-  ( f  =  ( g  |`  y )  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  <->  E. x  e.  y  ( (
g  |`  y ) `  x )  =  (/) ) )
7168eqeq1d 2148 . . . . . . . . . . . . 13  |-  ( f  =  ( g  |`  y )  ->  (
( f `  x
)  =  1o  <->  ( (
g  |`  y ) `  x )  =  1o ) )
7271ralbidv 2437 . . . . . . . . . . . 12  |-  ( f  =  ( g  |`  y )  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  y  ( (
g  |`  y ) `  x )  =  1o ) )
7370, 72orbi12d 782 . . . . . . . . . . 11  |-  ( f  =  ( g  |`  y )  ->  (
( E. x  e.  y  ( f `  x )  =  (/)  \/ 
A. x  e.  y  ( f `  x
)  =  1o )  <-> 
( E. x  e.  y  ( ( g  |`  y ) `  x
)  =  (/)  \/  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o ) ) )
7467, 73imbi12d 233 . . . . . . . . . 10  |-  ( f  =  ( g  |`  y )  ->  (
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) )  <->  ( (
g  |`  y ) : y --> 2o  ->  ( E. x  e.  y 
( ( g  |`  y ) `  x
)  =  (/)  \/  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o ) ) ) )
7566, 74spcv 2779 . . . . . . . . 9  |-  ( A. f ( f : y --> 2o  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) )  -> 
( ( g  |`  y ) : y --> 2o  ->  ( E. x  e.  y  (
( g  |`  y
) `  x )  =  (/)  \/  A. x  e.  y  ( (
g  |`  y ) `  x )  =  1o ) ) )
7664, 75syl 14 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  y  e. Omni )  ->  ( ( g  |`  y
) : y --> 2o 
->  ( E. x  e.  y  ( ( g  |`  y ) `  x
)  =  (/)  \/  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o ) ) )
77 ssun1 3239 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
78 fssres 5298 . . . . . . . . 9  |-  ( ( g : ( y  u.  { z } ) --> 2o  /\  y  C_  ( y  u.  {
z } ) )  ->  ( g  |`  y ) : y --> 2o )
7977, 78mpan2 421 . . . . . . . 8  |-  ( g : ( y  u. 
{ z } ) --> 2o  ->  ( g  |`  y ) : y --> 2o )
8076, 79impel 278 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  ( E. x  e.  y 
( ( g  |`  y ) `  x
)  =  (/)  \/  A. x  e.  y  (
( g  |`  y
) `  x )  =  1o ) )
8124, 59, 80mpjaod 707 . . . . . 6  |-  ( ( ( y  e.  Fin  /\  y  e. Omni )  /\  g : ( y  u. 
{ z } ) --> 2o )  ->  ( E. u  e.  (
y  u.  { z } ) ( g `
 u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) )
8281ex 114 . . . . 5  |-  ( ( y  e.  Fin  /\  y  e. Omni )  ->  ( g : ( y  u.  { z } ) --> 2o  ->  ( E. u  e.  (
y  u.  { z } ) ( g `
 u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) ) )
8382alrimiv 1846 . . . 4  |-  ( ( y  e.  Fin  /\  y  e. Omni )  ->  A. g ( g : ( y  u.  {
z } ) --> 2o 
->  ( E. u  e.  ( y  u.  {
z } ) ( g `  u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) ) )
8445snex 4109 . . . . . 6  |-  { z }  e.  _V
8560, 84unex 4362 . . . . 5  |-  ( y  u.  { z } )  e.  _V
86 isomni 7008 . . . . 5  |-  ( ( y  u.  { z } )  e.  _V  ->  ( ( y  u. 
{ z } )  e. Omni 
<-> 
A. g ( g : ( y  u. 
{ z } ) --> 2o  ->  ( E. u  e.  ( y  u.  { z } ) ( g `  u
)  =  (/)  \/  A. u  e.  ( y  u.  { z } ) ( g `  u
)  =  1o ) ) ) )
8785, 86ax-mp 5 . . . 4  |-  ( ( y  u.  { z } )  e. Omni  <->  A. g
( g : ( y  u.  { z } ) --> 2o  ->  ( E. u  e.  ( y  u.  { z } ) ( g `
 u )  =  (/)  \/  A. u  e.  ( y  u.  {
z } ) ( g `  u )  =  1o ) ) )
8883, 87sylibr 133 . . 3  |-  ( ( y  e.  Fin  /\  y  e. Omni )  ->  ( y  u.  { z } )  e. Omni )
8988ex 114 . 2  |-  ( y  e.  Fin  ->  (
y  e. Omni  ->  ( y  u.  { z } )  e. Omni ) )
901, 2, 3, 4, 11, 89findcard2 6783 1  |-  ( A  e.  Fin  ->  A  e. Omni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686    u. cun 3069    C_ wss 3071   (/)c0 3363   {csn 3527   {cpr 3528    |` cres 4541   -->wf 5119   ` cfv 5123   1oc1o 6306   2oc2o 6307   Fincfn 6634  Omnicomni 7004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-fin 6637  df-omni 7006
This theorem is referenced by:  trilpolemlt1  13295
  Copyright terms: Public domain W3C validator