ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinfti Unicode version

Theorem eqinfti 7148
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
eqinfti  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  -> inf ( B ,  A ,  R )  =  C ) )
Distinct variable groups:    u, A, v, y, z    ph, u, v    u, R, v, y, z    u, B, v, y, z    u, C, v, y, z
Allowed substitution hints:    ph( y, z)

Proof of Theorem eqinfti
StepHypRef Expression
1 df-inf 7113 . . 3  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 eqinfti.ti . . . . . 6  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
32cnvti 7147 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
43eqsupti 7124 . . . 4  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C `' R y  /\  A. y  e.  A  (
y `' R C  ->  E. z  e.  B  y `' R z ) )  ->  sup ( B ,  A ,  `' R
)  =  C ) )
5 vex 2779 . . . . . . . . . . 11  |-  y  e. 
_V
6 brcnvg 4877 . . . . . . . . . . . 12  |-  ( ( C  e.  A  /\  y  e.  _V )  ->  ( C `' R
y  <->  y R C ) )
76bicomd 141 . . . . . . . . . . 11  |-  ( ( C  e.  A  /\  y  e.  _V )  ->  ( y R C  <-> 
C `' R y ) )
85, 7mpan2 425 . . . . . . . . . 10  |-  ( C  e.  A  ->  (
y R C  <->  C `' R y ) )
98notbid 669 . . . . . . . . 9  |-  ( C  e.  A  ->  ( -.  y R C  <->  -.  C `' R y ) )
109ralbidv 2508 . . . . . . . 8  |-  ( C  e.  A  ->  ( A. y  e.  B  -.  y R C  <->  A. y  e.  B  -.  C `' R y ) )
11 brcnvg 4877 . . . . . . . . . . . 12  |-  ( ( y  e.  _V  /\  C  e.  A )  ->  ( y `' R C 
<->  C R y ) )
125, 11mpan 424 . . . . . . . . . . 11  |-  ( C  e.  A  ->  (
y `' R C  <-> 
C R y ) )
1312bicomd 141 . . . . . . . . . 10  |-  ( C  e.  A  ->  ( C R y  <->  y `' R C ) )
14 vex 2779 . . . . . . . . . . . . . 14  |-  z  e. 
_V
155, 14brcnv 4879 . . . . . . . . . . . . 13  |-  ( y `' R z  <->  z R
y )
1615a1i 9 . . . . . . . . . . . 12  |-  ( C  e.  A  ->  (
y `' R z  <-> 
z R y ) )
1716bicomd 141 . . . . . . . . . . 11  |-  ( C  e.  A  ->  (
z R y  <->  y `' R z ) )
1817rexbidv 2509 . . . . . . . . . 10  |-  ( C  e.  A  ->  ( E. z  e.  B  z R y  <->  E. z  e.  B  y `' R z ) )
1913, 18imbi12d 234 . . . . . . . . 9  |-  ( C  e.  A  ->  (
( C R y  ->  E. z  e.  B  z R y )  <->  ( y `' R C  ->  E. z  e.  B  y `' R z ) ) )
2019ralbidv 2508 . . . . . . . 8  |-  ( C  e.  A  ->  ( A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y )  <->  A. y  e.  A  ( y `' R C  ->  E. z  e.  B  y `' R z ) ) )
2110, 20anbi12d 473 . . . . . . 7  |-  ( C  e.  A  ->  (
( A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  <->  ( A. y  e.  B  -.  C `' R y  /\  A. y  e.  A  (
y `' R C  ->  E. z  e.  B  y `' R z ) ) ) )
2221pm5.32i 454 . . . . . 6  |-  ( ( C  e.  A  /\  ( A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) ) )  <->  ( C  e.  A  /\  ( A. y  e.  B  -.  C `' R y  /\  A. y  e.  A  (
y `' R C  ->  E. z  e.  B  y `' R z ) ) ) )
23 3anass 985 . . . . . 6  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  <->  ( C  e.  A  /\  ( A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) ) ) )
24 3anass 985 . . . . . 6  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  C `' R y  /\  A. y  e.  A  (
y `' R C  ->  E. z  e.  B  y `' R z ) )  <-> 
( C  e.  A  /\  ( A. y  e.  B  -.  C `' R y  /\  A. y  e.  A  (
y `' R C  ->  E. z  e.  B  y `' R z ) ) ) )
2522, 23, 243bitr4i 212 . . . . 5  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  <->  ( C  e.  A  /\  A. y  e.  B  -.  C `' R y  /\  A. y  e.  A  (
y `' R C  ->  E. z  e.  B  y `' R z ) ) )
2625biimpi 120 . . . 4  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  -> 
( C  e.  A  /\  A. y  e.  B  -.  C `' R y  /\  A. y  e.  A  ( y `' R C  ->  E. z  e.  B  y `' R z ) ) )
274, 26impel 280 . . 3  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) ) )  ->  sup ( B ,  A ,  `' R
)  =  C )
281, 27eqtrid 2252 . 2  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) ) )  -> inf ( B ,  A ,  R )  =  C )
2928ex 115 1  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  -> inf ( B ,  A ,  R )  =  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   class class class wbr 4059   `'ccnv 4692   supcsup 7110  infcinf 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-cnv 4701  df-iota 5251  df-riota 5922  df-sup 7112  df-inf 7113
This theorem is referenced by:  eqinftid  7149
  Copyright terms: Public domain W3C validator