Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqinfti | Unicode version |
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti |
Ref | Expression |
---|---|
eqinfti | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6925 | . . 3 inf | |
2 | eqinfti.ti | . . . . . 6 | |
3 | 2 | cnvti 6959 | . . . . 5 |
4 | 3 | eqsupti 6936 | . . . 4 |
5 | vex 2715 | . . . . . . . . . . 11 | |
6 | brcnvg 4766 | . . . . . . . . . . . 12 | |
7 | 6 | bicomd 140 | . . . . . . . . . . 11 |
8 | 5, 7 | mpan2 422 | . . . . . . . . . 10 |
9 | 8 | notbid 657 | . . . . . . . . 9 |
10 | 9 | ralbidv 2457 | . . . . . . . 8 |
11 | brcnvg 4766 | . . . . . . . . . . . 12 | |
12 | 5, 11 | mpan 421 | . . . . . . . . . . 11 |
13 | 12 | bicomd 140 | . . . . . . . . . 10 |
14 | vex 2715 | . . . . . . . . . . . . . 14 | |
15 | 5, 14 | brcnv 4768 | . . . . . . . . . . . . 13 |
16 | 15 | a1i 9 | . . . . . . . . . . . 12 |
17 | 16 | bicomd 140 | . . . . . . . . . . 11 |
18 | 17 | rexbidv 2458 | . . . . . . . . . 10 |
19 | 13, 18 | imbi12d 233 | . . . . . . . . 9 |
20 | 19 | ralbidv 2457 | . . . . . . . 8 |
21 | 10, 20 | anbi12d 465 | . . . . . . 7 |
22 | 21 | pm5.32i 450 | . . . . . 6 |
23 | 3anass 967 | . . . . . 6 | |
24 | 3anass 967 | . . . . . 6 | |
25 | 22, 23, 24 | 3bitr4i 211 | . . . . 5 |
26 | 25 | biimpi 119 | . . . 4 |
27 | 4, 26 | impel 278 | . . 3 |
28 | 1, 27 | syl5eq 2202 | . 2 inf |
29 | 28 | ex 114 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wral 2435 wrex 2436 cvv 2712 class class class wbr 3965 ccnv 4584 csup 6922 infcinf 6923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-cnv 4593 df-iota 5134 df-riota 5777 df-sup 6924 df-inf 6925 |
This theorem is referenced by: eqinftid 6961 |
Copyright terms: Public domain | W3C validator |