Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqinfti | Unicode version |
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti |
Ref | Expression |
---|---|
eqinfti | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6950 | . . 3 inf | |
2 | eqinfti.ti | . . . . . 6 | |
3 | 2 | cnvti 6984 | . . . . 5 |
4 | 3 | eqsupti 6961 | . . . 4 |
5 | vex 2729 | . . . . . . . . . . 11 | |
6 | brcnvg 4785 | . . . . . . . . . . . 12 | |
7 | 6 | bicomd 140 | . . . . . . . . . . 11 |
8 | 5, 7 | mpan2 422 | . . . . . . . . . 10 |
9 | 8 | notbid 657 | . . . . . . . . 9 |
10 | 9 | ralbidv 2466 | . . . . . . . 8 |
11 | brcnvg 4785 | . . . . . . . . . . . 12 | |
12 | 5, 11 | mpan 421 | . . . . . . . . . . 11 |
13 | 12 | bicomd 140 | . . . . . . . . . 10 |
14 | vex 2729 | . . . . . . . . . . . . . 14 | |
15 | 5, 14 | brcnv 4787 | . . . . . . . . . . . . 13 |
16 | 15 | a1i 9 | . . . . . . . . . . . 12 |
17 | 16 | bicomd 140 | . . . . . . . . . . 11 |
18 | 17 | rexbidv 2467 | . . . . . . . . . 10 |
19 | 13, 18 | imbi12d 233 | . . . . . . . . 9 |
20 | 19 | ralbidv 2466 | . . . . . . . 8 |
21 | 10, 20 | anbi12d 465 | . . . . . . 7 |
22 | 21 | pm5.32i 450 | . . . . . 6 |
23 | 3anass 972 | . . . . . 6 | |
24 | 3anass 972 | . . . . . 6 | |
25 | 22, 23, 24 | 3bitr4i 211 | . . . . 5 |
26 | 25 | biimpi 119 | . . . 4 |
27 | 4, 26 | impel 278 | . . 3 |
28 | 1, 27 | syl5eq 2211 | . 2 inf |
29 | 28 | ex 114 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 class class class wbr 3982 ccnv 4603 csup 6947 infcinf 6948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-iota 5153 df-riota 5798 df-sup 6949 df-inf 6950 |
This theorem is referenced by: eqinftid 6986 |
Copyright terms: Public domain | W3C validator |