ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcnp2cntop Unicode version

Theorem dvcnp2cntop 12706
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j  |-  J  =  ( Kt  A )
dvcnpcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvcnp2cntop  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)

Proof of Theorem dvcnp2cntop
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnpcntop.k . . . . 5  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
2 dvcnp.j . . . . 5  |-  J  =  ( Kt  A )
3 simpl3 969 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  S
)
4 simpl1 967 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  C_  CC )
53, 4sstrd 3075 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  CC )
6 simpl2 968 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F : A --> CC )
71cntoptop 12597 . . . . . . . 8  |-  K  e. 
Top
8 cnex 7708 . . . . . . . . 9  |-  CC  e.  _V
9 ssexg 4035 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
104, 8, 9sylancl 407 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  e.  _V )
11 resttop 12234 . . . . . . . 8  |-  ( ( K  e.  Top  /\  S  e.  _V )  ->  ( Kt  S )  e.  Top )
127, 10, 11sylancr 408 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  Top )
131cntoptopon 12596 . . . . . . . . . 10  |-  K  e.  (TopOn `  CC )
14 resttopon 12235 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
1513, 4, 14sylancr 408 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  (TopOn `  S
) )
16 toponuni 12077 . . . . . . . . 9  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Kt  S ) )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  =  U. ( Kt  S ) )
183, 17sseqtrd 3103 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  U. ( Kt  S ) )
19 eqid 2115 . . . . . . . 8  |-  U. ( Kt  S )  =  U. ( Kt  S )
2019ntrss2 12185 . . . . . . 7  |-  ( ( ( Kt  S )  e.  Top  /\  A  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  A )  C_  A
)
2112, 18, 20syl2anc 406 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( int `  ( Kt  S ) ) `  A )  C_  A
)
22 eqid 2115 . . . . . . . 8  |-  ( Kt  S )  =  ( Kt  S )
23 eqid 2115 . . . . . . . 8  |-  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) ) )  =  ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
24 simp1 964 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
25 simp2 965 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
26 simp3 966 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
2722, 1, 23, 24, 25, 26eldvap 12694 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  <->  ( B  e.  ( ( int `  ( Kt  S ) ) `  A )  /\  y  e.  ( ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) ) ) lim CC  B ) ) ) )
2827simprbda 378 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  ( ( int `  ( Kt  S ) ) `  A ) )
2921, 28sseldd 3066 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  A
)
306ffvelrnda 5521 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
316, 29ffvelrnd 5522 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  CC )
3231adantr 272 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
3330, 32subcld 8037 . . . . . . 7  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( F `  z
)  -  ( F `
 B ) )  e.  CC )
34 ssid 3085 . . . . . . . 8  |-  CC  C_  CC
3534a1i 9 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  CC  C_  CC )
36 txtopon 12326 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
3713, 13, 36mp2an 420 . . . . . . . 8  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
3837toponrestid 12083 . . . . . . 7  |-  ( K 
tX  K )  =  ( ( K  tX  K )t  ( CC  X.  CC ) )
396, 5, 29dvlemap 12692 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( (
( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) )  e.  CC )
40 ssrab2 3150 . . . . . . . . . . . . 13  |-  { w  e.  A  |  w #  B }  C_  A
4140, 5sstrid 3076 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  { w  e.  A  |  w #  B }  C_  CC )
4241sselda 3065 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  CC )
435, 29sseldd 3066 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  CC )
4443adantr 272 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  B  e.  CC )
4542, 44subcld 8037 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( z  -  B )  e.  CC )
4627simplbda 379 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) )
47 limcresi 12678 . . . . . . . . . . . 12  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)
48 resmpt 4835 . . . . . . . . . . . . . 14  |-  ( { w  e.  A  |  w #  B }  C_  A  ->  ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B }
)  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) )
4940, 48ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) )
5049oveq1i 5750 . . . . . . . . . . . 12  |-  ( ( ( z  e.  A  |->  ( z  -  B
) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)  =  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim
CC  B )
5147, 50sseqtri 3099 . . . . . . . . . . 11  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim CC  B )
5243subidd 8025 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  =  0 )
531subcncntop 12617 . . . . . . . . . . . . . . 15  |-  -  e.  ( ( K  tX  K )  Cn  K
)
5453a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  -  e.  ( ( K  tX  K
)  Cn  K ) )
55 cncfmptid 12647 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  z )  e.  ( A
-cn-> CC ) )
565, 34, 55sylancl 407 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  z )  e.  ( A -cn-> CC ) )
57 cncfmptc 12646 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  B )  e.  ( A
-cn-> CC ) )
5843, 5, 35, 57syl3anc 1199 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  B )  e.  ( A -cn-> CC ) )
591, 54, 56, 58cncfmpt2fcntop 12649 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( z  -  B ) )  e.  ( A -cn-> CC ) )
60 oveq1 5747 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  (
z  -  B )  =  ( B  -  B ) )
6159, 29, 60cnmptlimc 12686 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6252, 61eqeltrrd 2193 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6351, 62sseldi 3063 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim
CC  B ) )
641mulcncntop 12618 . . . . . . . . . . 11  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
6524, 25, 26dvcl 12695 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  CC )
66 0cn 7722 . . . . . . . . . . . 12  |-  0  e.  CC
67 opelxpi 4539 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  0  e.  CC )  -> 
<. y ,  0 >.  e.  ( CC  X.  CC ) )
6865, 66, 67sylancl 407 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. y ,  0
>.  e.  ( CC  X.  CC ) )
6937toponunii 12079 . . . . . . . . . . . 12  |-  ( CC 
X.  CC )  = 
U. ( K  tX  K )
7069cncnpi 12292 . . . . . . . . . . 11  |-  ( (  x.  e.  ( ( K  tX  K )  Cn  K )  /\  <.
y ,  0 >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. y ,  0 >. )
)
7164, 68, 70sylancr 408 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  x.  e.  ( ( ( K  tX  K )  CnP  K
) `  <. y ,  0 >. ) )
7239, 45, 35, 35, 1, 38, 46, 63, 71limccnp2cntop 12689 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) ) ) lim
CC  B ) )
7365mul01d 8119 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  =  0 )
746adantr 272 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  F : A
--> CC )
75 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  { w  e.  A  |  w #  B } )
7640, 75sseldi 3063 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  A )
7774, 76ffvelrnd 5522 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( F `  z )  e.  CC )
7831adantr 272 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( F `  B )  e.  CC )
7977, 78subcld 8037 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( ( F `  z )  -  ( F `  B ) )  e.  CC )
80 breq1 3900 . . . . . . . . . . . . . . . 16  |-  ( w  =  z  ->  (
w #  B  <->  z #  B
) )
8180elrab 2811 . . . . . . . . . . . . . . 15  |-  ( z  e.  { w  e.  A  |  w #  B } 
<->  ( z  e.  A  /\  z #  B )
)
8281simprbi 271 . . . . . . . . . . . . . 14  |-  ( z  e.  { w  e.  A  |  w #  B }  ->  z #  B )
8382adantl 273 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z #  B
)
8442, 44, 83subap0d 8368 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( z  -  B ) #  0 )
8579, 45, 84divcanap1d 8511 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( (
( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) )  =  ( ( F `  z )  -  ( F `  B )
) )
8685mpteq2dva 3986 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) )  x.  (
z  -  B ) ) )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
8786oveq1d 5755 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) )  x.  ( z  -  B
) ) ) lim CC  B )  =  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8872, 73, 873eltr3d 2198 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8933fmpttd 5541 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) ) : A --> CC )
9089, 5limcdifap 12674 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) )  |`  { w  e.  A  |  w #  B }
) lim CC  B )
)
91 resmpt 4835 . . . . . . . . . . 11  |-  ( { w  e.  A  |  w #  B }  C_  A  ->  ( ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
9240, 91ax-mp 5 . . . . . . . . . 10  |-  ( ( z  e.  A  |->  ( ( F `  z
)  -  ( F `
 B ) ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) )
9392oveq1i 5750 . . . . . . . . 9  |-  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)  =  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )
9490, 93syl6eq 2164 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
9588, 94eleqtrrd 2195 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
96 cncfmptc 12646 . . . . . . . . 9  |-  ( ( ( F `  B
)  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  ( F `  B ) )  e.  ( A
-cn-> CC ) )
9731, 5, 35, 96syl3anc 1199 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( F `  B ) )  e.  ( A -cn-> CC ) )
98 eqidd 2116 . . . . . . . 8  |-  ( z  =  B  ->  ( F `  B )  =  ( F `  B ) )
9997, 29, 98cnmptlimc 12686 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( ( z  e.  A  |->  ( F `  B
) ) lim CC  B
) )
1001addcncntop 12616 . . . . . . . 8  |-  +  e.  ( ( K  tX  K )  Cn  K
)
101 opelxpi 4539 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  ( F `  B )  e.  CC )  ->  <. 0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )
10266, 31, 101sylancr 408 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. 0 ,  ( F `  B )
>.  e.  ( CC  X.  CC ) )
10369cncnpi 12292 . . . . . . . 8  |-  ( (  +  e.  ( ( K  tX  K )  Cn  K )  /\  <.
0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. 0 ,  ( F `  B ) >. )
)
104100, 102, 103sylancr 408 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  +  e.  ( ( ( K  tX  K )  CnP  K
) `  <. 0 ,  ( F `  B
) >. ) )
10533, 32, 35, 35, 1, 38, 95, 99, 104limccnp2cntop 12689 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  e.  ( ( z  e.  A  |->  ( ( ( F `
 z )  -  ( F `  B ) )  +  ( F `
 B ) ) ) lim CC  B ) )
10631addid2d 7876 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  =  ( F `  B ) )
10730, 32npcand 8041 . . . . . . . . 9  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( ( F `  z )  -  ( F `  B )
)  +  ( F `
 B ) )  =  ( F `  z ) )
108107mpteq2dva 3986 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  ( z  e.  A  |->  ( F `  z
) ) )
1096feqmptd 5440 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
110108, 109eqtr4d 2151 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  F )
111110oveq1d 5755 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  +  ( F `  B ) ) ) lim
CC  B )  =  ( F lim CC  B
) )
112105, 106, 1113eltr3d 2198 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( F lim CC  B ) )
1131, 2, 5, 6, 29, 112cnplimclemr 12681 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
114113ex 114 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K ) `  B ) ) )
115114exlimdv 1773 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( E. y  B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K
) `  B )
) )
116 eldmg 4702 . . 3  |-  ( B  e.  dom  ( S  _D  F )  -> 
( B  e.  dom  ( S  _D  F
)  <->  E. y  B ( S  _D  F ) y ) )
117116ibi 175 . 2  |-  ( B  e.  dom  ( S  _D  F )  ->  E. y  B ( S  _D  F ) y )
118115, 117impel 276 1  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314   E.wex 1451    e. wcel 1463   {crab 2395   _Vcvv 2658    C_ wss 3039   <.cop 3498   U.cuni 3704   class class class wbr 3897    |-> cmpt 3957    X. cxp 4505   dom cdm 4507    |` cres 4509    o. ccom 4511   -->wf 5087   ` cfv 5091  (class class class)co 5740   CCcc 7582   0cc0 7584    + caddc 7587    x. cmul 7589    - cmin 7897   # cap 8306    / cdiv 8392   abscabs 10709   ↾t crest 12015   MetOpencmopn 12049   Topctop 12059  TopOnctopon 12072   intcnt 12157    Cn ccn 12249    CnP ccnp 12250    tX ctx 12316   -cn->ccncf 12621   lim CC climc 12666    _D cdv 12667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704  ax-addf 7706  ax-mulf 7707
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-pm 6511  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-xneg 9499  df-xadd 9500  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-rest 12017  df-topgen 12036  df-psmet 12051  df-xmet 12052  df-met 12053  df-bl 12054  df-mopn 12055  df-top 12060  df-topon 12073  df-bases 12105  df-ntr 12160  df-cn 12252  df-cnp 12253  df-tx 12317  df-cncf 12622  df-limced 12668  df-dvap 12669
This theorem is referenced by:  dvcn  12707  dvmulxxbr  12709  dvcoapbr  12714
  Copyright terms: Public domain W3C validator