ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcnp2cntop Unicode version

Theorem dvcnp2cntop 13830
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j  |-  J  =  ( Kt  A )
dvcnpcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvcnp2cntop  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)

Proof of Theorem dvcnp2cntop
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnpcntop.k . . . . 5  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
2 dvcnp.j . . . . 5  |-  J  =  ( Kt  A )
3 simpl3 1002 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  S
)
4 simpl1 1000 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  C_  CC )
53, 4sstrd 3165 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  CC )
6 simpl2 1001 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F : A --> CC )
71cntoptop 13700 . . . . . . . 8  |-  K  e. 
Top
8 cnex 7926 . . . . . . . . 9  |-  CC  e.  _V
9 ssexg 4139 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
104, 8, 9sylancl 413 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  e.  _V )
11 resttop 13337 . . . . . . . 8  |-  ( ( K  e.  Top  /\  S  e.  _V )  ->  ( Kt  S )  e.  Top )
127, 10, 11sylancr 414 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  Top )
131cntoptopon 13699 . . . . . . . . . 10  |-  K  e.  (TopOn `  CC )
14 resttopon 13338 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
1513, 4, 14sylancr 414 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  (TopOn `  S
) )
16 toponuni 13180 . . . . . . . . 9  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Kt  S ) )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  =  U. ( Kt  S ) )
183, 17sseqtrd 3193 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  U. ( Kt  S ) )
19 eqid 2177 . . . . . . . 8  |-  U. ( Kt  S )  =  U. ( Kt  S )
2019ntrss2 13288 . . . . . . 7  |-  ( ( ( Kt  S )  e.  Top  /\  A  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  A )  C_  A
)
2112, 18, 20syl2anc 411 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( int `  ( Kt  S ) ) `  A )  C_  A
)
22 eqid 2177 . . . . . . . 8  |-  ( Kt  S )  =  ( Kt  S )
23 eqid 2177 . . . . . . . 8  |-  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) ) )  =  ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
24 simp1 997 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
25 simp2 998 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
26 simp3 999 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
2722, 1, 23, 24, 25, 26eldvap 13818 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  <->  ( B  e.  ( ( int `  ( Kt  S ) ) `  A )  /\  y  e.  ( ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) ) ) lim CC  B ) ) ) )
2827simprbda 383 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  ( ( int `  ( Kt  S ) ) `  A ) )
2921, 28sseldd 3156 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  A
)
306ffvelcdmda 5647 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
316, 29ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  CC )
3231adantr 276 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
3330, 32subcld 8258 . . . . . . 7  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( F `  z
)  -  ( F `
 B ) )  e.  CC )
34 ssid 3175 . . . . . . . 8  |-  CC  C_  CC
3534a1i 9 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  CC  C_  CC )
36 txtopon 13429 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
3713, 13, 36mp2an 426 . . . . . . . 8  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
3837toponrestid 13186 . . . . . . 7  |-  ( K 
tX  K )  =  ( ( K  tX  K )t  ( CC  X.  CC ) )
396, 5, 29dvlemap 13816 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( (
( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) )  e.  CC )
40 ssrab2 3240 . . . . . . . . . . . . 13  |-  { w  e.  A  |  w #  B }  C_  A
4140, 5sstrid 3166 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  { w  e.  A  |  w #  B }  C_  CC )
4241sselda 3155 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  CC )
435, 29sseldd 3156 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  CC )
4443adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  B  e.  CC )
4542, 44subcld 8258 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( z  -  B )  e.  CC )
4627simplbda 384 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) )
47 limcresi 13802 . . . . . . . . . . . 12  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)
48 resmpt 4951 . . . . . . . . . . . . . 14  |-  ( { w  e.  A  |  w #  B }  C_  A  ->  ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B }
)  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) )
4940, 48ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) )
5049oveq1i 5879 . . . . . . . . . . . 12  |-  ( ( ( z  e.  A  |->  ( z  -  B
) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)  =  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim
CC  B )
5147, 50sseqtri 3189 . . . . . . . . . . 11  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim CC  B )
5243subidd 8246 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  =  0 )
531subcncntop 13720 . . . . . . . . . . . . . . 15  |-  -  e.  ( ( K  tX  K )  Cn  K
)
5453a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  -  e.  ( ( K  tX  K
)  Cn  K ) )
55 cncfmptid 13750 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  z )  e.  ( A
-cn-> CC ) )
565, 34, 55sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  z )  e.  ( A -cn-> CC ) )
57 cncfmptc 13749 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  B )  e.  ( A
-cn-> CC ) )
5843, 5, 35, 57syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  B )  e.  ( A -cn-> CC ) )
591, 54, 56, 58cncfmpt2fcntop 13752 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( z  -  B ) )  e.  ( A -cn-> CC ) )
60 oveq1 5876 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  (
z  -  B )  =  ( B  -  B ) )
6159, 29, 60cnmptlimc 13810 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6252, 61eqeltrrd 2255 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6351, 62sselid 3153 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim
CC  B ) )
641mulcncntop 13721 . . . . . . . . . . 11  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
6524, 25, 26dvcl 13819 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  CC )
66 0cn 7940 . . . . . . . . . . . 12  |-  0  e.  CC
67 opelxpi 4655 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  0  e.  CC )  -> 
<. y ,  0 >.  e.  ( CC  X.  CC ) )
6865, 66, 67sylancl 413 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. y ,  0
>.  e.  ( CC  X.  CC ) )
6937toponunii 13182 . . . . . . . . . . . 12  |-  ( CC 
X.  CC )  = 
U. ( K  tX  K )
7069cncnpi 13395 . . . . . . . . . . 11  |-  ( (  x.  e.  ( ( K  tX  K )  Cn  K )  /\  <.
y ,  0 >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. y ,  0 >. )
)
7164, 68, 70sylancr 414 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  x.  e.  ( ( ( K  tX  K )  CnP  K
) `  <. y ,  0 >. ) )
7239, 45, 35, 35, 1, 38, 46, 63, 71limccnp2cntop 13813 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) ) ) lim
CC  B ) )
7365mul01d 8340 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  =  0 )
746adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  F : A
--> CC )
75 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  { w  e.  A  |  w #  B } )
7640, 75sselid 3153 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  A )
7774, 76ffvelcdmd 5648 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( F `  z )  e.  CC )
7831adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( F `  B )  e.  CC )
7977, 78subcld 8258 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( ( F `  z )  -  ( F `  B ) )  e.  CC )
80 breq1 4003 . . . . . . . . . . . . . . . 16  |-  ( w  =  z  ->  (
w #  B  <->  z #  B
) )
8180elrab 2893 . . . . . . . . . . . . . . 15  |-  ( z  e.  { w  e.  A  |  w #  B } 
<->  ( z  e.  A  /\  z #  B )
)
8281simprbi 275 . . . . . . . . . . . . . 14  |-  ( z  e.  { w  e.  A  |  w #  B }  ->  z #  B )
8382adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z #  B
)
8442, 44, 83subap0d 8591 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( z  -  B ) #  0 )
8579, 45, 84divcanap1d 8737 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( (
( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) )  =  ( ( F `  z )  -  ( F `  B )
) )
8685mpteq2dva 4090 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) )  x.  (
z  -  B ) ) )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
8786oveq1d 5884 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) )  x.  ( z  -  B
) ) ) lim CC  B )  =  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8872, 73, 873eltr3d 2260 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8933fmpttd 5667 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) ) : A --> CC )
9089, 5limcdifap 13798 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) )  |`  { w  e.  A  |  w #  B }
) lim CC  B )
)
91 resmpt 4951 . . . . . . . . . . 11  |-  ( { w  e.  A  |  w #  B }  C_  A  ->  ( ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
9240, 91ax-mp 5 . . . . . . . . . 10  |-  ( ( z  e.  A  |->  ( ( F `  z
)  -  ( F `
 B ) ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) )
9392oveq1i 5879 . . . . . . . . 9  |-  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)  =  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )
9490, 93eqtrdi 2226 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
9588, 94eleqtrrd 2257 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
96 cncfmptc 13749 . . . . . . . . 9  |-  ( ( ( F `  B
)  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  ( F `  B ) )  e.  ( A
-cn-> CC ) )
9731, 5, 35, 96syl3anc 1238 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( F `  B ) )  e.  ( A -cn-> CC ) )
98 eqidd 2178 . . . . . . . 8  |-  ( z  =  B  ->  ( F `  B )  =  ( F `  B ) )
9997, 29, 98cnmptlimc 13810 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( ( z  e.  A  |->  ( F `  B
) ) lim CC  B
) )
1001addcncntop 13719 . . . . . . . 8  |-  +  e.  ( ( K  tX  K )  Cn  K
)
101 opelxpi 4655 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  ( F `  B )  e.  CC )  ->  <. 0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )
10266, 31, 101sylancr 414 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. 0 ,  ( F `  B )
>.  e.  ( CC  X.  CC ) )
10369cncnpi 13395 . . . . . . . 8  |-  ( (  +  e.  ( ( K  tX  K )  Cn  K )  /\  <.
0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. 0 ,  ( F `  B ) >. )
)
104100, 102, 103sylancr 414 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  +  e.  ( ( ( K  tX  K )  CnP  K
) `  <. 0 ,  ( F `  B
) >. ) )
10533, 32, 35, 35, 1, 38, 95, 99, 104limccnp2cntop 13813 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  e.  ( ( z  e.  A  |->  ( ( ( F `
 z )  -  ( F `  B ) )  +  ( F `
 B ) ) ) lim CC  B ) )
10631addid2d 8097 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  =  ( F `  B ) )
10730, 32npcand 8262 . . . . . . . . 9  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( ( F `  z )  -  ( F `  B )
)  +  ( F `
 B ) )  =  ( F `  z ) )
108107mpteq2dva 4090 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  ( z  e.  A  |->  ( F `  z
) ) )
1096feqmptd 5565 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
110108, 109eqtr4d 2213 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  F )
111110oveq1d 5884 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  +  ( F `  B ) ) ) lim
CC  B )  =  ( F lim CC  B
) )
112105, 106, 1113eltr3d 2260 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( F lim CC  B ) )
1131, 2, 5, 6, 29, 112cnplimclemr 13805 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
114113ex 115 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K ) `  B ) ) )
115114exlimdv 1819 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( E. y  B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K
) `  B )
) )
116 eldmg 4818 . . 3  |-  ( B  e.  dom  ( S  _D  F )  -> 
( B  e.  dom  ( S  _D  F
)  <->  E. y  B ( S  _D  F ) y ) )
117116ibi 176 . 2  |-  ( B  e.  dom  ( S  _D  F )  ->  E. y  B ( S  _D  F ) y )
118115, 117impel 280 1  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   {crab 2459   _Vcvv 2737    C_ wss 3129   <.cop 3594   U.cuni 3807   class class class wbr 4000    |-> cmpt 4061    X. cxp 4621   dom cdm 4623    |` cres 4625    o. ccom 4627   -->wf 5208   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802    + caddc 7805    x. cmul 7807    - cmin 8118   # cap 8528    / cdiv 8618   abscabs 10990   ↾t crest 12636   MetOpencmopn 13152   Topctop 13162  TopOnctopon 13175   intcnt 13260    Cn ccn 13352    CnP ccnp 13353    tX ctx 13419   -cn->ccncf 13724   lim CC climc 13790    _D cdv 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pm 6645  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  dvcn  13831  dvmulxxbr  13833  dvcoapbr  13838
  Copyright terms: Public domain W3C validator