ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcnp2cntop Unicode version

Theorem dvcnp2cntop 14166
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j  |-  J  =  ( Kt  A )
dvcnpcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvcnp2cntop  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)

Proof of Theorem dvcnp2cntop
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnpcntop.k . . . . 5  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
2 dvcnp.j . . . . 5  |-  J  =  ( Kt  A )
3 simpl3 1002 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  S
)
4 simpl1 1000 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  C_  CC )
53, 4sstrd 3166 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  CC )
6 simpl2 1001 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F : A --> CC )
71cntoptop 14036 . . . . . . . 8  |-  K  e. 
Top
8 cnex 7935 . . . . . . . . 9  |-  CC  e.  _V
9 ssexg 4143 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
104, 8, 9sylancl 413 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  e.  _V )
11 resttop 13673 . . . . . . . 8  |-  ( ( K  e.  Top  /\  S  e.  _V )  ->  ( Kt  S )  e.  Top )
127, 10, 11sylancr 414 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  Top )
131cntoptopon 14035 . . . . . . . . . 10  |-  K  e.  (TopOn `  CC )
14 resttopon 13674 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
1513, 4, 14sylancr 414 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  (TopOn `  S
) )
16 toponuni 13518 . . . . . . . . 9  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Kt  S ) )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  =  U. ( Kt  S ) )
183, 17sseqtrd 3194 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  U. ( Kt  S ) )
19 eqid 2177 . . . . . . . 8  |-  U. ( Kt  S )  =  U. ( Kt  S )
2019ntrss2 13624 . . . . . . 7  |-  ( ( ( Kt  S )  e.  Top  /\  A  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  A )  C_  A
)
2112, 18, 20syl2anc 411 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( int `  ( Kt  S ) ) `  A )  C_  A
)
22 eqid 2177 . . . . . . . 8  |-  ( Kt  S )  =  ( Kt  S )
23 eqid 2177 . . . . . . . 8  |-  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) ) )  =  ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
24 simp1 997 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
25 simp2 998 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
26 simp3 999 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
2722, 1, 23, 24, 25, 26eldvap 14154 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  <->  ( B  e.  ( ( int `  ( Kt  S ) ) `  A )  /\  y  e.  ( ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) ) ) lim CC  B ) ) ) )
2827simprbda 383 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  ( ( int `  ( Kt  S ) ) `  A ) )
2921, 28sseldd 3157 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  A
)
306ffvelcdmda 5652 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
316, 29ffvelcdmd 5653 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  CC )
3231adantr 276 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
3330, 32subcld 8268 . . . . . . 7  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( F `  z
)  -  ( F `
 B ) )  e.  CC )
34 ssid 3176 . . . . . . . 8  |-  CC  C_  CC
3534a1i 9 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  CC  C_  CC )
36 txtopon 13765 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
3713, 13, 36mp2an 426 . . . . . . . 8  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
3837toponrestid 13524 . . . . . . 7  |-  ( K 
tX  K )  =  ( ( K  tX  K )t  ( CC  X.  CC ) )
396, 5, 29dvlemap 14152 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( (
( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) )  e.  CC )
40 ssrab2 3241 . . . . . . . . . . . . 13  |-  { w  e.  A  |  w #  B }  C_  A
4140, 5sstrid 3167 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  { w  e.  A  |  w #  B }  C_  CC )
4241sselda 3156 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  CC )
435, 29sseldd 3157 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  CC )
4443adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  B  e.  CC )
4542, 44subcld 8268 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( z  -  B )  e.  CC )
4627simplbda 384 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) )
47 limcresi 14138 . . . . . . . . . . . 12  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)
48 resmpt 4956 . . . . . . . . . . . . . 14  |-  ( { w  e.  A  |  w #  B }  C_  A  ->  ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B }
)  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) )
4940, 48ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  |->  ( z  -  B ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) )
5049oveq1i 5885 . . . . . . . . . . . 12  |-  ( ( ( z  e.  A  |->  ( z  -  B
) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)  =  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim
CC  B )
5147, 50sseqtri 3190 . . . . . . . . . . 11  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim CC  B )
5243subidd 8256 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  =  0 )
531subcncntop 14056 . . . . . . . . . . . . . . 15  |-  -  e.  ( ( K  tX  K )  Cn  K
)
5453a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  -  e.  ( ( K  tX  K
)  Cn  K ) )
55 cncfmptid 14086 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  z )  e.  ( A
-cn-> CC ) )
565, 34, 55sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  z )  e.  ( A -cn-> CC ) )
57 cncfmptc 14085 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  B )  e.  ( A
-cn-> CC ) )
5843, 5, 35, 57syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  B )  e.  ( A -cn-> CC ) )
591, 54, 56, 58cncfmpt2fcntop 14088 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( z  -  B ) )  e.  ( A -cn-> CC ) )
60 oveq1 5882 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  (
z  -  B )  =  ( B  -  B ) )
6159, 29, 60cnmptlimc 14146 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6252, 61eqeltrrd 2255 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6351, 62sselid 3154 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( z  -  B ) ) lim
CC  B ) )
641mulcncntop 14057 . . . . . . . . . . 11  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
6524, 25, 26dvcl 14155 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  CC )
66 0cn 7949 . . . . . . . . . . . 12  |-  0  e.  CC
67 opelxpi 4659 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  0  e.  CC )  -> 
<. y ,  0 >.  e.  ( CC  X.  CC ) )
6865, 66, 67sylancl 413 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. y ,  0
>.  e.  ( CC  X.  CC ) )
6937toponunii 13520 . . . . . . . . . . . 12  |-  ( CC 
X.  CC )  = 
U. ( K  tX  K )
7069cncnpi 13731 . . . . . . . . . . 11  |-  ( (  x.  e.  ( ( K  tX  K )  Cn  K )  /\  <.
y ,  0 >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. y ,  0 >. )
)
7164, 68, 70sylancr 414 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  x.  e.  ( ( ( K  tX  K )  CnP  K
) `  <. y ,  0 >. ) )
7239, 45, 35, 35, 1, 38, 46, 63, 71limccnp2cntop 14149 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) ) ) lim
CC  B ) )
7365mul01d 8350 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  =  0 )
746adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  F : A
--> CC )
75 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  { w  e.  A  |  w #  B } )
7640, 75sselid 3154 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z  e.  A )
7774, 76ffvelcdmd 5653 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( F `  z )  e.  CC )
7831adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( F `  B )  e.  CC )
7977, 78subcld 8268 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( ( F `  z )  -  ( F `  B ) )  e.  CC )
80 breq1 4007 . . . . . . . . . . . . . . . 16  |-  ( w  =  z  ->  (
w #  B  <->  z #  B
) )
8180elrab 2894 . . . . . . . . . . . . . . 15  |-  ( z  e.  { w  e.  A  |  w #  B } 
<->  ( z  e.  A  /\  z #  B )
)
8281simprbi 275 . . . . . . . . . . . . . 14  |-  ( z  e.  { w  e.  A  |  w #  B }  ->  z #  B )
8382adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  z #  B
)
8442, 44, 83subap0d 8601 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( z  -  B ) #  0 )
8579, 45, 84divcanap1d 8748 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e. 
{ w  e.  A  |  w #  B }
)  ->  ( (
( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) )  =  ( ( F `  z )  -  ( F `  B )
) )
8685mpteq2dva 4094 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) )  x.  (
z  -  B ) ) )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
8786oveq1d 5890 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) )  x.  ( z  -  B
) ) ) lim CC  B )  =  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8872, 73, 873eltr3d 2260 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8933fmpttd 5672 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) ) : A --> CC )
9089, 5limcdifap 14134 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) )  |`  { w  e.  A  |  w #  B }
) lim CC  B )
)
91 resmpt 4956 . . . . . . . . . . 11  |-  ( { w  e.  A  |  w #  B }  C_  A  ->  ( ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
9240, 91ax-mp 5 . . . . . . . . . 10  |-  ( ( z  e.  A  |->  ( ( F `  z
)  -  ( F `
 B ) ) )  |`  { w  e.  A  |  w #  B } )  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) )
9392oveq1i 5885 . . . . . . . . 9  |-  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) )  |`  { w  e.  A  |  w #  B } ) lim CC  B
)  =  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )
9490, 93eqtrdi 2226 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
9588, 94eleqtrrd 2257 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
96 cncfmptc 14085 . . . . . . . . 9  |-  ( ( ( F `  B
)  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  ( F `  B ) )  e.  ( A
-cn-> CC ) )
9731, 5, 35, 96syl3anc 1238 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( F `  B ) )  e.  ( A -cn-> CC ) )
98 eqidd 2178 . . . . . . . 8  |-  ( z  =  B  ->  ( F `  B )  =  ( F `  B ) )
9997, 29, 98cnmptlimc 14146 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( ( z  e.  A  |->  ( F `  B
) ) lim CC  B
) )
1001addcncntop 14055 . . . . . . . 8  |-  +  e.  ( ( K  tX  K )  Cn  K
)
101 opelxpi 4659 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  ( F `  B )  e.  CC )  ->  <. 0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )
10266, 31, 101sylancr 414 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. 0 ,  ( F `  B )
>.  e.  ( CC  X.  CC ) )
10369cncnpi 13731 . . . . . . . 8  |-  ( (  +  e.  ( ( K  tX  K )  Cn  K )  /\  <.
0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. 0 ,  ( F `  B ) >. )
)
104100, 102, 103sylancr 414 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  +  e.  ( ( ( K  tX  K )  CnP  K
) `  <. 0 ,  ( F `  B
) >. ) )
10533, 32, 35, 35, 1, 38, 95, 99, 104limccnp2cntop 14149 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  e.  ( ( z  e.  A  |->  ( ( ( F `
 z )  -  ( F `  B ) )  +  ( F `
 B ) ) ) lim CC  B ) )
10631addid2d 8107 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  =  ( F `  B ) )
10730, 32npcand 8272 . . . . . . . . 9  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( ( F `  z )  -  ( F `  B )
)  +  ( F `
 B ) )  =  ( F `  z ) )
108107mpteq2dva 4094 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  ( z  e.  A  |->  ( F `  z
) ) )
1096feqmptd 5570 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
110108, 109eqtr4d 2213 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  F )
111110oveq1d 5890 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  +  ( F `  B ) ) ) lim
CC  B )  =  ( F lim CC  B
) )
112105, 106, 1113eltr3d 2260 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( F lim CC  B ) )
1131, 2, 5, 6, 29, 112cnplimclemr 14141 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
114113ex 115 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K ) `  B ) ) )
115114exlimdv 1819 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( E. y  B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K
) `  B )
) )
116 eldmg 4823 . . 3  |-  ( B  e.  dom  ( S  _D  F )  -> 
( B  e.  dom  ( S  _D  F
)  <->  E. y  B ( S  _D  F ) y ) )
117116ibi 176 . 2  |-  ( B  e.  dom  ( S  _D  F )  ->  E. y  B ( S  _D  F ) y )
118115, 117impel 280 1  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   {crab 2459   _Vcvv 2738    C_ wss 3130   <.cop 3596   U.cuni 3810   class class class wbr 4004    |-> cmpt 4065    X. cxp 4625   dom cdm 4627    |` cres 4629    o. ccom 4631   -->wf 5213   ` cfv 5217  (class class class)co 5875   CCcc 7809   0cc0 7811    + caddc 7814    x. cmul 7816    - cmin 8128   # cap 8538    / cdiv 8629   abscabs 11006   ↾t crest 12688   MetOpencmopn 13448   Topctop 13500  TopOnctopon 13513   intcnt 13596    Cn ccn 13688    CnP ccnp 13689    tX ctx 13755   -cn->ccncf 14060   lim CC climc 14126    _D cdv 14127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931  ax-addf 7933  ax-mulf 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-map 6650  df-pm 6651  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-rest 12690  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-met 13452  df-bl 13453  df-mopn 13454  df-top 13501  df-topon 13514  df-bases 13546  df-ntr 13599  df-cn 13691  df-cnp 13692  df-tx 13756  df-cncf 14061  df-limced 14128  df-dvap 14129
This theorem is referenced by:  dvcn  14167  dvmulxxbr  14169  dvcoapbr  14174
  Copyright terms: Public domain W3C validator