ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgrclt Unicode version

Theorem frecuzrdgrclt 10219
Description: The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of  S. Similar to frecuzrdgrcl 10214 except that  S and  T need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
Assertion
Ref Expression
frecuzrdgrclt  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y
Allowed substitution hints:    A( x, y)    R( x, y)

Proof of Theorem frecuzrdgrclt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 6081 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
21adantl 275 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
32fveq2d 5433 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. ) )
4 df-ov 5785 . . . . . . 7  |-  ( ( 1st `  z ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
5 xp1st 6071 . . . . . . . . 9  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
65adantl 275 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
7 frecuzrdgrclt.t . . . . . . . . . 10  |-  ( ph  ->  S  C_  T )
87sseld 3101 . . . . . . . . 9  |-  ( ph  ->  ( ( 2nd `  z
)  e.  S  -> 
( 2nd `  z
)  e.  T ) )
9 xp2nd 6072 . . . . . . . . 9  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  z )  e.  S
)
108, 9impel 278 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  T
)
11 peano2uz 9405 . . . . . . . . . 10  |-  ( ( 1st `  z )  e.  ( ZZ>= `  C
)  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
126, 11syl 14 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
13 frecuzrdgrclt.f . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
1413ralrimivva 2517 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
ZZ>= `  C ) A. y  e.  S  (
x F y )  e.  S )
1514adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S )
169adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  S
)
17 oveq1 5789 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  z
)  ->  ( x F y )  =  ( ( 1st `  z
) F y ) )
1817eleq1d 2209 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  z
)  ->  ( (
x F y )  e.  S  <->  ( ( 1st `  z ) F y )  e.  S
) )
19 oveq2 5790 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z ) F y )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
2019eleq1d 2209 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
) F y )  e.  S  <->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
2118, 20rspc2v 2806 . . . . . . . . . . 11  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  S )  ->  ( A. x  e.  ( ZZ>=
`  C ) A. y  e.  S  (
x F y )  e.  S  ->  (
( 1st `  z
) F ( 2nd `  z ) )  e.  S ) )
226, 16, 21syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
2315, 22mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
)
24 opelxp 4577 . . . . . . . . 9  |-  ( <.
( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S )  <->  ( (
( 1st `  z
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
2512, 23, 24sylanbrc 414 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
26 oveq1 5789 . . . . . . . . . 10  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  1 )  =  ( ( 1st `  z
)  +  1 ) )
2726, 17opeq12d 3721 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  <. ( x  +  1 ) ,  ( x F y ) >.  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F y ) >. )
2819opeq2d 3720 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F y )
>.  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.
)
29 eqid 2140 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
3027, 28, 29ovmpog 5913 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  T  /\  <. (
( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )  -> 
( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
316, 10, 25, 30syl3anc 1217 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
324, 31syl5eqr 2187 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z
) ) >. )
3332, 25eqeltrd 2217 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )  e.  ( ( ZZ>= `  C
)  X.  S ) )
343, 33eqeltrd 2217 . . . 4  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S ) )
3534ralrimiva 2508 . . 3  |-  ( ph  ->  A. z  e.  ( ( ZZ>= `  C )  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S ) )
36 frecuzrdgrclt.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
37 uzid 9364 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
3836, 37syl 14 . . . 4  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
39 frecuzrdgrclt.a . . . 4  |-  ( ph  ->  A  e.  S )
40 opelxp 4577 . . . 4  |-  ( <. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S )  <-> 
( C  e.  (
ZZ>= `  C )  /\  A  e.  S )
)
4138, 39, 40sylanbrc 414 . . 3  |-  ( ph  -> 
<. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
42 frecfcl 6310 . . 3  |-  ( ( A. z  e.  ( ( ZZ>= `  C )  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S )  /\  <. C ,  A >.  e.  ( ( ZZ>= `  C )  X.  S ) )  -> frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) : om --> ( ( ZZ>= `  C
)  X.  S ) )
4335, 41, 42syl2anc 409 . 2  |-  ( ph  -> frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) : om --> ( ( ZZ>= `  C
)  X.  S ) )
44 frecuzrdgrclt.r . . 3  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
4544feq1i 5273 . 2  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  <-> frec ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) : om --> ( (
ZZ>= `  C )  X.  S ) )
4643, 45sylibr 133 1  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417    C_ wss 3076   <.cop 3535   omcom 4512    X. cxp 4545   -->wf 5127   ` cfv 5131  (class class class)co 5782    e. cmpo 5784   1stc1st 6044   2ndc2nd 6045  freccfrec 6295   1c1 7645    + caddc 7647   ZZcz 9078   ZZ>=cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  frecuzrdgg  10220  frecuzrdgdomlem  10221  frecuzrdgfunlem  10223  frecuzrdgtclt  10225  frecuzrdg0t  10226  frecuzrdgsuctlem  10227  seq3val  10262  seqvalcd  10263
  Copyright terms: Public domain W3C validator