| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdgrclt | Unicode version | ||
| Description: The function |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c |
|
| frecuzrdgrclt.a |
|
| frecuzrdgrclt.t |
|
| frecuzrdgrclt.f |
|
| frecuzrdgrclt.r |
|
| Ref | Expression |
|---|---|
| frecuzrdgrclt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 6321 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | 2 | fveq2d 5631 |
. . . . 5
|
| 4 | df-ov 6004 |
. . . . . . 7
| |
| 5 | xp1st 6311 |
. . . . . . . . 9
| |
| 6 | 5 | adantl 277 |
. . . . . . . 8
|
| 7 | frecuzrdgrclt.t |
. . . . . . . . . 10
| |
| 8 | 7 | sseld 3223 |
. . . . . . . . 9
|
| 9 | xp2nd 6312 |
. . . . . . . . 9
| |
| 10 | 8, 9 | impel 280 |
. . . . . . . 8
|
| 11 | peano2uz 9778 |
. . . . . . . . . 10
| |
| 12 | 6, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | frecuzrdgrclt.f |
. . . . . . . . . . . 12
| |
| 14 | 13 | ralrimivva 2612 |
. . . . . . . . . . 11
|
| 15 | 14 | adantr 276 |
. . . . . . . . . 10
|
| 16 | 9 | adantl 277 |
. . . . . . . . . . 11
|
| 17 | oveq1 6008 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | eleq1d 2298 |
. . . . . . . . . . . 12
|
| 19 | oveq2 6009 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | eleq1d 2298 |
. . . . . . . . . . . 12
|
| 21 | 18, 20 | rspc2v 2920 |
. . . . . . . . . . 11
|
| 22 | 6, 16, 21 | syl2anc 411 |
. . . . . . . . . 10
|
| 23 | 15, 22 | mpd 13 |
. . . . . . . . 9
|
| 24 | opelxp 4749 |
. . . . . . . . 9
| |
| 25 | 12, 23, 24 | sylanbrc 417 |
. . . . . . . 8
|
| 26 | oveq1 6008 |
. . . . . . . . . 10
| |
| 27 | 26, 17 | opeq12d 3865 |
. . . . . . . . 9
|
| 28 | 19 | opeq2d 3864 |
. . . . . . . . 9
|
| 29 | eqid 2229 |
. . . . . . . . 9
| |
| 30 | 27, 28, 29 | ovmpog 6139 |
. . . . . . . 8
|
| 31 | 6, 10, 25, 30 | syl3anc 1271 |
. . . . . . 7
|
| 32 | 4, 31 | eqtr3id 2276 |
. . . . . 6
|
| 33 | 32, 25 | eqeltrd 2306 |
. . . . 5
|
| 34 | 3, 33 | eqeltrd 2306 |
. . . 4
|
| 35 | 34 | ralrimiva 2603 |
. . 3
|
| 36 | frecuzrdgrclt.c |
. . . . 5
| |
| 37 | uzid 9736 |
. . . . 5
| |
| 38 | 36, 37 | syl 14 |
. . . 4
|
| 39 | frecuzrdgrclt.a |
. . . 4
| |
| 40 | opelxp 4749 |
. . . 4
| |
| 41 | 38, 39, 40 | sylanbrc 417 |
. . 3
|
| 42 | frecfcl 6551 |
. . 3
| |
| 43 | 35, 41, 42 | syl2anc 411 |
. 2
|
| 44 | frecuzrdgrclt.r |
. . 3
| |
| 45 | 44 | feq1i 5466 |
. 2
|
| 46 | 43, 45 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 |
| This theorem is referenced by: frecuzrdgg 10638 frecuzrdgdomlem 10639 frecuzrdgfunlem 10641 frecuzrdgtclt 10643 frecuzrdg0t 10644 frecuzrdgsuctlem 10645 seq3val 10682 seqvalcd 10683 |
| Copyright terms: Public domain | W3C validator |