ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgrclt Unicode version

Theorem frecuzrdgrclt 10307
Description: The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of  S. Similar to frecuzrdgrcl 10302 except that  S and  T need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
Assertion
Ref Expression
frecuzrdgrclt  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y
Allowed substitution hints:    A( x, y)    R( x, y)

Proof of Theorem frecuzrdgrclt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 6120 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
21adantl 275 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
32fveq2d 5471 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. ) )
4 df-ov 5824 . . . . . . 7  |-  ( ( 1st `  z ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
5 xp1st 6110 . . . . . . . . 9  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
65adantl 275 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
7 frecuzrdgrclt.t . . . . . . . . . 10  |-  ( ph  ->  S  C_  T )
87sseld 3127 . . . . . . . . 9  |-  ( ph  ->  ( ( 2nd `  z
)  e.  S  -> 
( 2nd `  z
)  e.  T ) )
9 xp2nd 6111 . . . . . . . . 9  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  z )  e.  S
)
108, 9impel 278 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  T
)
11 peano2uz 9488 . . . . . . . . . 10  |-  ( ( 1st `  z )  e.  ( ZZ>= `  C
)  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
126, 11syl 14 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
13 frecuzrdgrclt.f . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
1413ralrimivva 2539 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
ZZ>= `  C ) A. y  e.  S  (
x F y )  e.  S )
1514adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S )
169adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  S
)
17 oveq1 5828 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  z
)  ->  ( x F y )  =  ( ( 1st `  z
) F y ) )
1817eleq1d 2226 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  z
)  ->  ( (
x F y )  e.  S  <->  ( ( 1st `  z ) F y )  e.  S
) )
19 oveq2 5829 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z ) F y )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
2019eleq1d 2226 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
) F y )  e.  S  <->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
2118, 20rspc2v 2829 . . . . . . . . . . 11  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  S )  ->  ( A. x  e.  ( ZZ>=
`  C ) A. y  e.  S  (
x F y )  e.  S  ->  (
( 1st `  z
) F ( 2nd `  z ) )  e.  S ) )
226, 16, 21syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
2315, 22mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
)
24 opelxp 4615 . . . . . . . . 9  |-  ( <.
( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S )  <->  ( (
( 1st `  z
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
2512, 23, 24sylanbrc 414 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
26 oveq1 5828 . . . . . . . . . 10  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  1 )  =  ( ( 1st `  z
)  +  1 ) )
2726, 17opeq12d 3749 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  <. ( x  +  1 ) ,  ( x F y ) >.  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F y ) >. )
2819opeq2d 3748 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F y )
>.  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.
)
29 eqid 2157 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
3027, 28, 29ovmpog 5952 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  T  /\  <. (
( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )  -> 
( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
316, 10, 25, 30syl3anc 1220 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
324, 31eqtr3id 2204 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z
) ) >. )
3332, 25eqeltrd 2234 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )  e.  ( ( ZZ>= `  C
)  X.  S ) )
343, 33eqeltrd 2234 . . . 4  |-  ( (
ph  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S ) )
3534ralrimiva 2530 . . 3  |-  ( ph  ->  A. z  e.  ( ( ZZ>= `  C )  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S ) )
36 frecuzrdgrclt.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
37 uzid 9447 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
3836, 37syl 14 . . . 4  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
39 frecuzrdgrclt.a . . . 4  |-  ( ph  ->  A  e.  S )
40 opelxp 4615 . . . 4  |-  ( <. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S )  <-> 
( C  e.  (
ZZ>= `  C )  /\  A  e.  S )
)
4138, 39, 40sylanbrc 414 . . 3  |-  ( ph  -> 
<. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
42 frecfcl 6349 . . 3  |-  ( ( A. z  e.  ( ( ZZ>= `  C )  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S )  /\  <. C ,  A >.  e.  ( ( ZZ>= `  C )  X.  S ) )  -> frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) : om --> ( ( ZZ>= `  C
)  X.  S ) )
4335, 41, 42syl2anc 409 . 2  |-  ( ph  -> frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) : om --> ( ( ZZ>= `  C
)  X.  S ) )
44 frecuzrdgrclt.r . . 3  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
4544feq1i 5311 . 2  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  <-> frec ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) : om --> ( (
ZZ>= `  C )  X.  S ) )
4643, 45sylibr 133 1  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435    C_ wss 3102   <.cop 3563   omcom 4548    X. cxp 4583   -->wf 5165   ` cfv 5169  (class class class)co 5821    e. cmpo 5823   1stc1st 6083   2ndc2nd 6084  freccfrec 6334   1c1 7727    + caddc 7729   ZZcz 9161   ZZ>=cuz 9433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162  df-uz 9434
This theorem is referenced by:  frecuzrdgg  10308  frecuzrdgdomlem  10309  frecuzrdgfunlem  10311  frecuzrdgtclt  10313  frecuzrdg0t  10314  frecuzrdgsuctlem  10315  seq3val  10350  seqvalcd  10351
  Copyright terms: Public domain W3C validator