ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitsn Unicode version

Theorem fprodsplitsn 11523
Description: Separate out a term in a finite product. See also fprodunsn 11494 which is the same but with a distinct variable condition in place of  F/ k ph. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplitsn.ph  |-  F/ k
ph
fprodsplitsn.kd  |-  F/_ k D
fprodsplitsn.a  |-  ( ph  ->  A  e.  Fin )
fprodsplitsn.b  |-  ( ph  ->  B  e.  V )
fprodsplitsn.ba  |-  ( ph  ->  -.  B  e.  A
)
fprodsplitsn.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fprodsplitsn.d  |-  ( k  =  B  ->  C  =  D )
fprodsplitsn.dcn  |-  ( ph  ->  D  e.  CC )
Assertion
Ref Expression
fprodsplitsn  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D )
)
Distinct variable groups:    A, k    B, k    k, V
Allowed substitution hints:    ph( k)    C( k)    D( k)

Proof of Theorem fprodsplitsn
StepHypRef Expression
1 fprodsplitsn.ph . . 3  |-  F/ k
ph
2 fprodsplitsn.ba . . . 4  |-  ( ph  ->  -.  B  e.  A
)
3 disjsn 3621 . . . 4  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
42, 3sylibr 133 . . 3  |-  ( ph  ->  ( A  i^i  { B } )  =  (/) )
5 eqidd 2158 . . 3  |-  ( ph  ->  ( A  u.  { B } )  =  ( A  u.  { B } ) )
6 fprodsplitsn.a . . . 4  |-  ( ph  ->  A  e.  Fin )
7 fprodsplitsn.b . . . . 5  |-  ( ph  ->  B  e.  V )
8 snfig 6756 . . . . 5  |-  ( B  e.  V  ->  { B }  e.  Fin )
97, 8syl 14 . . . 4  |-  ( ph  ->  { B }  e.  Fin )
10 unfidisj 6863 . . . 4  |-  ( ( A  e.  Fin  /\  { B }  e.  Fin  /\  ( A  i^i  { B } )  =  (/) )  ->  ( A  u.  { B } )  e. 
Fin )
116, 9, 4, 10syl3anc 1220 . . 3  |-  ( ph  ->  ( A  u.  { B } )  e.  Fin )
12 fprodsplitsn.c . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
1312ex 114 . . . . 5  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
14 fprodsplitsn.d . . . . . . . 8  |-  ( k  =  B  ->  C  =  D )
1514adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  =  B )  ->  C  =  D )
16 fprodsplitsn.dcn . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
1716adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  =  B )  ->  D  e.  CC )
1815, 17eqeltrd 2234 . . . . . 6  |-  ( (
ph  /\  k  =  B )  ->  C  e.  CC )
1918ex 114 . . . . 5  |-  ( ph  ->  ( k  =  B  ->  C  e.  CC ) )
2013, 19jaod 707 . . . 4  |-  ( ph  ->  ( ( k  e.  A  \/  k  =  B )  ->  C  e.  CC ) )
21 elun 3248 . . . . 5  |-  ( k  e.  ( A  u.  { B } )  <->  ( k  e.  A  \/  k  e.  { B } ) )
22 elsni 3578 . . . . . 6  |-  ( k  e.  { B }  ->  k  =  B )
2322orim2i 751 . . . . 5  |-  ( ( k  e.  A  \/  k  e.  { B } )  ->  (
k  e.  A  \/  k  =  B )
)
2421, 23sylbi 120 . . . 4  |-  ( k  e.  ( A  u.  { B } )  -> 
( k  e.  A  \/  k  =  B
) )
2520, 24impel 278 . . 3  |-  ( (
ph  /\  k  e.  ( A  u.  { B } ) )  ->  C  e.  CC )
261, 4, 5, 11, 25fprodsplitf 11522 . 2  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  prod_ k  e. 
{ B } C
) )
27 fprodsplitsn.kd . . . . 5  |-  F/_ k D
2827, 14prodsnf 11482 . . . 4  |-  ( ( B  e.  V  /\  D  e.  CC )  ->  prod_ k  e.  { B } C  =  D )
297, 16, 28syl2anc 409 . . 3  |-  ( ph  ->  prod_ k  e.  { B } C  =  D )
3029oveq2d 5837 . 2  |-  ( ph  ->  ( prod_ k  e.  A  C  x.  prod_ k  e. 
{ B } C
)  =  ( prod_
k  e.  A  C  x.  D ) )
3126, 30eqtrd 2190 1  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1335   F/wnf 1440    e. wcel 2128   F/_wnfc 2286    u. cun 3100    i^i cin 3101   (/)c0 3394   {csn 3560  (class class class)co 5821   Fincfn 6682   CCcc 7724    x. cmul 7731   prod_cprod 11440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-proddc 11441
This theorem is referenced by:  fprodap0f  11526  fprodle  11530
  Copyright terms: Public domain W3C validator