ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitsn Unicode version

Theorem fprodsplitsn 11574
Description: Separate out a term in a finite product. See also fprodunsn 11545 which is the same but with a distinct variable condition in place of  F/ k ph. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplitsn.ph  |-  F/ k
ph
fprodsplitsn.kd  |-  F/_ k D
fprodsplitsn.a  |-  ( ph  ->  A  e.  Fin )
fprodsplitsn.b  |-  ( ph  ->  B  e.  V )
fprodsplitsn.ba  |-  ( ph  ->  -.  B  e.  A
)
fprodsplitsn.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fprodsplitsn.d  |-  ( k  =  B  ->  C  =  D )
fprodsplitsn.dcn  |-  ( ph  ->  D  e.  CC )
Assertion
Ref Expression
fprodsplitsn  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D )
)
Distinct variable groups:    A, k    B, k    k, V
Allowed substitution hints:    ph( k)    C( k)    D( k)

Proof of Theorem fprodsplitsn
StepHypRef Expression
1 fprodsplitsn.ph . . 3  |-  F/ k
ph
2 fprodsplitsn.ba . . . 4  |-  ( ph  ->  -.  B  e.  A
)
3 disjsn 3638 . . . 4  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
42, 3sylibr 133 . . 3  |-  ( ph  ->  ( A  i^i  { B } )  =  (/) )
5 eqidd 2166 . . 3  |-  ( ph  ->  ( A  u.  { B } )  =  ( A  u.  { B } ) )
6 fprodsplitsn.a . . . 4  |-  ( ph  ->  A  e.  Fin )
7 fprodsplitsn.b . . . . 5  |-  ( ph  ->  B  e.  V )
8 snfig 6780 . . . . 5  |-  ( B  e.  V  ->  { B }  e.  Fin )
97, 8syl 14 . . . 4  |-  ( ph  ->  { B }  e.  Fin )
10 unfidisj 6887 . . . 4  |-  ( ( A  e.  Fin  /\  { B }  e.  Fin  /\  ( A  i^i  { B } )  =  (/) )  ->  ( A  u.  { B } )  e. 
Fin )
116, 9, 4, 10syl3anc 1228 . . 3  |-  ( ph  ->  ( A  u.  { B } )  e.  Fin )
12 fprodsplitsn.c . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
1312ex 114 . . . . 5  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
14 fprodsplitsn.d . . . . . . . 8  |-  ( k  =  B  ->  C  =  D )
1514adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  =  B )  ->  C  =  D )
16 fprodsplitsn.dcn . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
1716adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  =  B )  ->  D  e.  CC )
1815, 17eqeltrd 2243 . . . . . 6  |-  ( (
ph  /\  k  =  B )  ->  C  e.  CC )
1918ex 114 . . . . 5  |-  ( ph  ->  ( k  =  B  ->  C  e.  CC ) )
2013, 19jaod 707 . . . 4  |-  ( ph  ->  ( ( k  e.  A  \/  k  =  B )  ->  C  e.  CC ) )
21 elun 3263 . . . . 5  |-  ( k  e.  ( A  u.  { B } )  <->  ( k  e.  A  \/  k  e.  { B } ) )
22 elsni 3594 . . . . . 6  |-  ( k  e.  { B }  ->  k  =  B )
2322orim2i 751 . . . . 5  |-  ( ( k  e.  A  \/  k  e.  { B } )  ->  (
k  e.  A  \/  k  =  B )
)
2421, 23sylbi 120 . . . 4  |-  ( k  e.  ( A  u.  { B } )  -> 
( k  e.  A  \/  k  =  B
) )
2520, 24impel 278 . . 3  |-  ( (
ph  /\  k  e.  ( A  u.  { B } ) )  ->  C  e.  CC )
261, 4, 5, 11, 25fprodsplitf 11573 . 2  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  prod_ k  e. 
{ B } C
) )
27 fprodsplitsn.kd . . . . 5  |-  F/_ k D
2827, 14prodsnf 11533 . . . 4  |-  ( ( B  e.  V  /\  D  e.  CC )  ->  prod_ k  e.  { B } C  =  D )
297, 16, 28syl2anc 409 . . 3  |-  ( ph  ->  prod_ k  e.  { B } C  =  D )
3029oveq2d 5858 . 2  |-  ( ph  ->  ( prod_ k  e.  A  C  x.  prod_ k  e. 
{ B } C
)  =  ( prod_
k  e.  A  C  x.  D ) )
3126, 30eqtrd 2198 1  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343   F/wnf 1448    e. wcel 2136   F/_wnfc 2295    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576  (class class class)co 5842   Fincfn 6706   CCcc 7751    x. cmul 7758   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodap0f  11577  fprodle  11581
  Copyright terms: Public domain W3C validator