ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrot Unicode version

Theorem inrot 3342
Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
inrot  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  A )  i^i  B )

Proof of Theorem inrot
StepHypRef Expression
1 in31 3341 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  B )  i^i  A )
2 in32 3339 . 2  |-  ( ( C  i^i  B )  i^i  A )  =  ( ( C  i^i  A )  i^i  B )
31, 2eqtri 2191 1  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  A )  i^i  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    i^i cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator