ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrot Unicode version

Theorem inrot 3336
Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
inrot  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  A )  i^i  B )

Proof of Theorem inrot
StepHypRef Expression
1 in31 3335 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  B )  i^i  A )
2 in32 3333 . 2  |-  ( ( C  i^i  B )  i^i  A )  =  ( ( C  i^i  A )  i^i  B )
31, 2eqtri 2186 1  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  A )  i^i  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    i^i cin 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-in 3121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator