ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrot GIF version

Theorem inrot 3419
Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
inrot ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐴) ∩ 𝐵)

Proof of Theorem inrot
StepHypRef Expression
1 in31 3418 . 2 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)
2 in32 3416 . 2 ((𝐶𝐵) ∩ 𝐴) = ((𝐶𝐴) ∩ 𝐵)
31, 2eqtri 2250 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐴) ∩ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator