ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in32 Unicode version

Theorem in32 3385
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
in32  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  B )

Proof of Theorem in32
StepHypRef Expression
1 inass 3383 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( A  i^i  ( B  i^i  C ) )
2 in12 3384 . 2  |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )
3 incom 3365 . 2  |-  ( B  i^i  ( A  i^i  C ) )  =  ( ( A  i^i  C
)  i^i  B )
41, 2, 33eqtri 2230 1  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  in13  3386  inrot  3388  imainrect  5129  setsfun  12900  setsfun0  12901
  Copyright terms: Public domain W3C validator