Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  in32 Unicode version

Theorem in32 3227
 Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
in32

Proof of Theorem in32
StepHypRef Expression
1 inass 3225 . 2
2 in12 3226 . 2
3 incom 3207 . 2
41, 2, 33eqtri 2119 1
 Colors of variables: wff set class Syntax hints:   wceq 1296   cin 3012 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077 This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-in 3019 This theorem is referenced by:  in13  3228  inrot  3230  imainrect  4910  setsfun  11693  setsfun0  11694
 Copyright terms: Public domain W3C validator