ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in4 Unicode version

Theorem in4 3379
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in4  |-  ( ( A  i^i  B )  i^i  ( C  i^i  D ) )  =  ( ( A  i^i  C
)  i^i  ( B  i^i  D ) )

Proof of Theorem in4
StepHypRef Expression
1 in12 3374 . . 3  |-  ( B  i^i  ( C  i^i  D ) )  =  ( C  i^i  ( B  i^i  D ) )
21ineq2i 3361 . 2  |-  ( A  i^i  ( B  i^i  ( C  i^i  D ) ) )  =  ( A  i^i  ( C  i^i  ( B  i^i  D ) ) )
3 inass 3373 . 2  |-  ( ( A  i^i  B )  i^i  ( C  i^i  D ) )  =  ( A  i^i  ( B  i^i  ( C  i^i  D ) ) )
4 inass 3373 . 2  |-  ( ( A  i^i  C )  i^i  ( B  i^i  D ) )  =  ( A  i^i  ( C  i^i  ( B  i^i  D ) ) )
52, 3, 43eqtr4i 2227 1  |-  ( ( A  i^i  B )  i^i  ( C  i^i  D ) )  =  ( ( A  i^i  C
)  i^i  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  inindi  3380  inindir  3381
  Copyright terms: Public domain W3C validator