ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in31 Unicode version

Theorem in31 3364
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in31  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  B )  i^i  A )

Proof of Theorem in31
StepHypRef Expression
1 in12 3361 . 2  |-  ( C  i^i  ( A  i^i  B ) )  =  ( A  i^i  ( C  i^i  B ) )
2 incom 3342 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( C  i^i  ( A  i^i  B ) )
3 incom 3342 . 2  |-  ( ( C  i^i  B )  i^i  A )  =  ( A  i^i  ( C  i^i  B ) )
41, 2, 33eqtr4i 2220 1  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  B )  i^i  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    i^i cin 3143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150
This theorem is referenced by:  inrot  3365
  Copyright terms: Public domain W3C validator