ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq2dva Unicode version

Theorem ixpeq2dva 6679
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
ixpeq2dva  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
21ralrimiva 2539 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
3 ixpeq2 6678 . 2  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)
42, 3syl 14 1  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   X_cixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-in 3122  df-ss 3129  df-ixp 6665
This theorem is referenced by:  ixpeq2dv  6680
  Copyright terms: Public domain W3C validator