ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq2dva Unicode version

Theorem ixpeq2dva 6800
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
ixpeq2dva  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
21ralrimiva 2579 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
3 ixpeq2 6799 . 2  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)
42, 3syl 14 1  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   X_cixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-in 3172  df-ss 3179  df-ixp 6786
This theorem is referenced by:  ixpeq2dv  6801
  Copyright terms: Public domain W3C validator