ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq2dv Unicode version

Theorem ixpeq2dv 6652
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dv.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
ixpeq2dv  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem ixpeq2dv
StepHypRef Expression
1 ixpeq2dv.1 . . 3  |-  ( ph  ->  B  =  C )
21adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
32ixpeq2dva 6651 1  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   X_cixp 6636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-in 3108  df-ss 3115  df-ixp 6637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator