Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpeq2 | Unicode version |
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
ixpeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ixp 6677 | . . 3 | |
2 | ss2ixp 6677 | . . 3 | |
3 | 1, 2 | anim12i 336 | . 2 |
4 | eqss 3157 | . . . 4 | |
5 | 4 | ralbii 2472 | . . 3 |
6 | r19.26 2592 | . . 3 | |
7 | 5, 6 | bitri 183 | . 2 |
8 | eqss 3157 | . 2 | |
9 | 3, 7, 8 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wral 2444 wss 3116 cixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-in 3122 df-ss 3129 df-ixp 6665 |
This theorem is referenced by: ixpeq2dva 6679 ixpintm 6691 |
Copyright terms: Public domain | W3C validator |