ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq2 Unicode version

Theorem ixpeq2 6799
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq2  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)

Proof of Theorem ixpeq2
StepHypRef Expression
1 ss2ixp 6798 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  X_ x  e.  A  B  C_  X_ x  e.  A  C )
2 ss2ixp 6798 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  X_ x  e.  A  C  C_  X_ x  e.  A  B )
31, 2anim12i 338 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B )  ->  ( X_ x  e.  A  B  C_  X_ x  e.  A  C  /\  X_ x  e.  A  C  C_  X_ x  e.  A  B ) )
4 eqss 3208 . . . 4  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
54ralbii 2512 . . 3  |-  ( A. x  e.  A  B  =  C  <->  A. x  e.  A  ( B  C_  C  /\  C  C_  B ) )
6 r19.26 2632 . . 3  |-  ( A. x  e.  A  ( B  C_  C  /\  C  C_  B )  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B
) )
75, 6bitri 184 . 2  |-  ( A. x  e.  A  B  =  C  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B ) )
8 eqss 3208 . 2  |-  ( X_ x  e.  A  B  =  X_ x  e.  A  C 
<->  ( X_ x  e.  A  B  C_  X_ x  e.  A  C  /\  X_ x  e.  A  C  C_  X_ x  e.  A  B ) )
93, 7, 83imtr4i 201 1  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   A.wral 2484    C_ wss 3166   X_cixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-in 3172  df-ss 3179  df-ixp 6786
This theorem is referenced by:  ixpeq2dva  6800  ixpintm  6812  prdsbas3  13119  pwsbas  13124
  Copyright terms: Public domain W3C validator