ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq2 Unicode version

Theorem ixpeq2 6572
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq2  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)

Proof of Theorem ixpeq2
StepHypRef Expression
1 ss2ixp 6571 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  X_ x  e.  A  B  C_  X_ x  e.  A  C )
2 ss2ixp 6571 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  X_ x  e.  A  C  C_  X_ x  e.  A  B )
31, 2anim12i 334 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B )  ->  ( X_ x  e.  A  B  C_  X_ x  e.  A  C  /\  X_ x  e.  A  C  C_  X_ x  e.  A  B ) )
4 eqss 3080 . . . 4  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
54ralbii 2416 . . 3  |-  ( A. x  e.  A  B  =  C  <->  A. x  e.  A  ( B  C_  C  /\  C  C_  B ) )
6 r19.26 2533 . . 3  |-  ( A. x  e.  A  ( B  C_  C  /\  C  C_  B )  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B
) )
75, 6bitri 183 . 2  |-  ( A. x  e.  A  B  =  C  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B ) )
8 eqss 3080 . 2  |-  ( X_ x  e.  A  B  =  X_ x  e.  A  C 
<->  ( X_ x  e.  A  B  C_  X_ x  e.  A  C  /\  X_ x  e.  A  C  C_  X_ x  e.  A  B ) )
93, 7, 83imtr4i 200 1  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314   A.wral 2391    C_ wss 3039   X_cixp 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-in 3045  df-ss 3052  df-ixp 6559
This theorem is referenced by:  ixpeq2dva  6573  ixpintm  6585
  Copyright terms: Public domain W3C validator