Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omniwomnimkv | Unicode version |
Description: A set is omniscient if and only if it is weakly omniscient and Markov. The case says that LPO WLPO MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
Ref | Expression |
---|---|
omniwomnimkv | Omni WOmni Markov |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 Omni | |
2 | simpl 108 | . . 3 WOmni Markov WOmni | |
3 | 2 | elexd 2739 | . 2 WOmni Markov |
4 | 1n0 6400 | . . . . . . . . . . . . . . 15 | |
5 | 4 | nesymi 2382 | . . . . . . . . . . . . . 14 |
6 | eqeq1 2172 | . . . . . . . . . . . . . 14 | |
7 | 5, 6 | mtbiri 665 | . . . . . . . . . . . . 13 |
8 | 7 | reximi 2563 | . . . . . . . . . . . 12 |
9 | rexnalim 2455 | . . . . . . . . . . . 12 | |
10 | 8, 9 | syl 14 | . . . . . . . . . . 11 |
11 | 10 | orim1i 750 | . . . . . . . . . 10 |
12 | 11 | orcomd 719 | . . . . . . . . 9 |
13 | df-dc 825 | . . . . . . . . 9 DECID | |
14 | 12, 13 | sylibr 133 | . . . . . . . 8 DECID |
15 | 14 | adantl 275 | . . . . . . 7 DECID |
16 | simpr 109 | . . . . . . . . 9 | |
17 | 16 | orcomd 719 | . . . . . . . 8 |
18 | 17 | ord 714 | . . . . . . 7 |
19 | 15, 18 | jca 304 | . . . . . 6 DECID |
20 | simprl 521 | . . . . . . . . 9 DECID DECID | |
21 | 20, 13 | sylib 121 | . . . . . . . 8 DECID |
22 | simprr 522 | . . . . . . . . 9 DECID | |
23 | 22 | orim2d 778 | . . . . . . . 8 DECID |
24 | 21, 23 | mpd 13 | . . . . . . 7 DECID |
25 | 24 | orcomd 719 | . . . . . 6 DECID |
26 | 19, 25 | impbida 586 | . . . . 5 DECID |
27 | 26 | pm5.74da 440 | . . . 4 DECID |
28 | 27 | albidv 1812 | . . 3 DECID |
29 | isomni 7100 | . . 3 Omni | |
30 | iswomni 7129 | . . . . . 6 WOmni DECID | |
31 | ismkv 7117 | . . . . . 6 Markov | |
32 | 30, 31 | anbi12d 465 | . . . . 5 WOmni Markov DECID |
33 | 19.26 1469 | . . . . 5 DECID DECID | |
34 | 32, 33 | bitr4di 197 | . . . 4 WOmni Markov DECID |
35 | jcab 593 | . . . . 5 DECID DECID | |
36 | 35 | albii 1458 | . . . 4 DECID DECID |
37 | 34, 36 | bitr4di 197 | . . 3 WOmni Markov DECID |
38 | 28, 29, 37 | 3bitr4d 219 | . 2 Omni WOmni Markov |
39 | 1, 3, 38 | pm5.21nii 694 | 1 Omni WOmni Markov |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wal 1341 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 c0 3409 wf 5184 cfv 5188 c1o 6377 c2o 6378 Omnicomni 7098 Markovcmarkov 7115 WOmnicwomni 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-suc 4349 df-fn 5191 df-f 5192 df-1o 6384 df-omni 7099 df-markov 7116 df-womni 7128 |
This theorem is referenced by: lpowlpo 7132 |
Copyright terms: Public domain | W3C validator |