ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omniwomnimkv Unicode version

Theorem omniwomnimkv 7143
Description: A set is omniscient if and only if it is weakly omniscient and Markov. The case  A  =  om says that LPO  <-> WLPO  /\ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
omniwomnimkv  |-  ( A  e. Omni 
<->  ( A  e. WOmni  /\  A  e. Markov ) )

Proof of Theorem omniwomnimkv
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e. Omni  ->  A  e.  _V )
2 simpl 108 . . 3  |-  ( ( A  e. WOmni  /\  A  e. Markov
)  ->  A  e. WOmni )
32elexd 2743 . 2  |-  ( ( A  e. WOmni  /\  A  e. Markov
)  ->  A  e.  _V )
4 1n0 6411 . . . . . . . . . . . . . . 15  |-  1o  =/=  (/)
54nesymi 2386 . . . . . . . . . . . . . 14  |-  -.  (/)  =  1o
6 eqeq1 2177 . . . . . . . . . . . . . 14  |-  ( ( f `  x )  =  (/)  ->  ( ( f `  x )  =  1o  <->  (/)  =  1o ) )
75, 6mtbiri 670 . . . . . . . . . . . . 13  |-  ( ( f `  x )  =  (/)  ->  -.  (
f `  x )  =  1o )
87reximi 2567 . . . . . . . . . . . 12  |-  ( E. x  e.  A  ( f `  x )  =  (/)  ->  E. x  e.  A  -.  (
f `  x )  =  1o )
9 rexnalim 2459 . . . . . . . . . . . 12  |-  ( E. x  e.  A  -.  ( f `  x
)  =  1o  ->  -. 
A. x  e.  A  ( f `  x
)  =  1o )
108, 9syl 14 . . . . . . . . . . 11  |-  ( E. x  e.  A  ( f `  x )  =  (/)  ->  -.  A. x  e.  A  (
f `  x )  =  1o )
1110orim1i 755 . . . . . . . . . 10  |-  ( ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  \/  A. x  e.  A  ( f `  x )  =  1o ) )
1211orcomd 724 . . . . . . . . 9  |-  ( ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o )  ->  ( A. x  e.  A  ( f `  x
)  =  1o  \/  -.  A. x  e.  A  ( f `  x
)  =  1o ) )
13 df-dc 830 . . . . . . . . 9  |-  (DECID  A. x  e.  A  ( f `  x )  =  1o  <->  ( A. x  e.  A  ( f `  x
)  =  1o  \/  -.  A. x  e.  A  ( f `  x
)  =  1o ) )
1412, 13sylibr 133 . . . . . . . 8  |-  ( ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )
1514adantl 275 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )
16 simpr 109 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  ->  ( E. x  e.  A  (
f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o ) )
1716orcomd 724 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  ->  ( A. x  e.  A  (
f `  x )  =  1o  \/  E. x  e.  A  ( f `  x )  =  (/) ) )
1817ord 719 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
1915, 18jca 304 . . . . . 6  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  ->  (DECID  A. x  e.  A  ( f `  x )  =  1o 
/\  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
20 simprl 526 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )
2120, 13sylib 121 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )  ->  ( A. x  e.  A  (
f `  x )  =  1o  \/  -.  A. x  e.  A  ( f `  x )  =  1o ) )
22 simprr 527 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
2322orim2d 783 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )  ->  ( ( A. x  e.  A  ( f `  x
)  =  1o  \/  -.  A. x  e.  A  ( f `  x
)  =  1o )  ->  ( A. x  e.  A  ( f `  x )  =  1o  \/  E. x  e.  A  ( f `  x )  =  (/) ) ) )
2421, 23mpd 13 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )  ->  ( A. x  e.  A  (
f `  x )  =  1o  \/  E. x  e.  A  ( f `  x )  =  (/) ) )
2524orcomd 724 . . . . . 6  |-  ( ( ( A  e.  _V  /\  f : A --> 2o )  /\  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )  ->  ( E. x  e.  A  (
f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o ) )
2619, 25impbida 591 . . . . 5  |-  ( ( A  e.  _V  /\  f : A --> 2o )  ->  ( ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o )  <->  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
2726pm5.74da 441 . . . 4  |-  ( A  e.  _V  ->  (
( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  <->  ( f : A --> 2o  ->  (DECID  A. x  e.  A  (
f `  x )  =  1o  /\  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) ) )
2827albidv 1817 . . 3  |-  ( A  e.  _V  ->  ( A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) )  <->  A. f
( f : A --> 2o  ->  (DECID 
A. x  e.  A  ( f `  x
)  =  1o  /\  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) ) )
29 isomni 7112 . . 3  |-  ( A  e.  _V  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
30 iswomni 7141 . . . . . 6  |-  ( A  e.  _V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
31 ismkv 7129 . . . . . 6  |-  ( A  e.  _V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
3230, 31anbi12d 470 . . . . 5  |-  ( A  e.  _V  ->  (
( A  e. WOmni  /\  A  e. Markov )  <->  ( A. f
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  /\  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) ) )
33 19.26 1474 . . . . 5  |-  ( A. f ( ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o )  /\  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )  <->  ( A. f
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  /\  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
3432, 33bitr4di 197 . . . 4  |-  ( A  e.  _V  ->  (
( A  e. WOmni  /\  A  e. Markov )  <->  A. f ( ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o )  /\  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) ) )
35 jcab 598 . . . . 5  |-  ( ( f : A --> 2o  ->  (DECID  A. x  e.  A  (
f `  x )  =  1o  /\  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )  <-> 
( ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  /\  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
3635albii 1463 . . . 4  |-  ( A. f ( f : A --> 2o  ->  (DECID  A. x  e.  A  (
f `  x )  =  1o  /\  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )  <->  A. f ( ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o )  /\  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
3734, 36bitr4di 197 . . 3  |-  ( A  e.  _V  ->  (
( A  e. WOmni  /\  A  e. Markov )  <->  A. f ( f : A --> 2o  ->  (DECID  A. x  e.  A  (
f `  x )  =  1o  /\  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) ) )
3828, 29, 373bitr4d 219 . 2  |-  ( A  e.  _V  ->  ( A  e. Omni  <->  ( A  e. WOmni  /\  A  e. Markov ) ) )
391, 3, 38pm5.21nii 699 1  |-  ( A  e. Omni 
<->  ( A  e. WOmni  /\  A  e. Markov ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   _Vcvv 2730   (/)c0 3414   -->wf 5194   ` cfv 5198   1oc1o 6388   2oc2o 6389  Omnicomni 7110  Markovcmarkov 7127  WOmnicwomni 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-suc 4356  df-fn 5201  df-f 5202  df-1o 6395  df-omni 7111  df-markov 7128  df-womni 7140
This theorem is referenced by:  lpowlpo  7144
  Copyright terms: Public domain W3C validator