Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omniwomnimkv | Unicode version |
Description: A set is omniscient if and only if it is weakly omniscient and Markov. The case says that LPO WLPO MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
Ref | Expression |
---|---|
omniwomnimkv | Omni WOmni Markov |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 Omni | |
2 | simpl 108 | . . 3 WOmni Markov WOmni | |
3 | 2 | elexd 2743 | . 2 WOmni Markov |
4 | 1n0 6411 | . . . . . . . . . . . . . . 15 | |
5 | 4 | nesymi 2386 | . . . . . . . . . . . . . 14 |
6 | eqeq1 2177 | . . . . . . . . . . . . . 14 | |
7 | 5, 6 | mtbiri 670 | . . . . . . . . . . . . 13 |
8 | 7 | reximi 2567 | . . . . . . . . . . . 12 |
9 | rexnalim 2459 | . . . . . . . . . . . 12 | |
10 | 8, 9 | syl 14 | . . . . . . . . . . 11 |
11 | 10 | orim1i 755 | . . . . . . . . . 10 |
12 | 11 | orcomd 724 | . . . . . . . . 9 |
13 | df-dc 830 | . . . . . . . . 9 DECID | |
14 | 12, 13 | sylibr 133 | . . . . . . . 8 DECID |
15 | 14 | adantl 275 | . . . . . . 7 DECID |
16 | simpr 109 | . . . . . . . . 9 | |
17 | 16 | orcomd 724 | . . . . . . . 8 |
18 | 17 | ord 719 | . . . . . . 7 |
19 | 15, 18 | jca 304 | . . . . . 6 DECID |
20 | simprl 526 | . . . . . . . . 9 DECID DECID | |
21 | 20, 13 | sylib 121 | . . . . . . . 8 DECID |
22 | simprr 527 | . . . . . . . . 9 DECID | |
23 | 22 | orim2d 783 | . . . . . . . 8 DECID |
24 | 21, 23 | mpd 13 | . . . . . . 7 DECID |
25 | 24 | orcomd 724 | . . . . . 6 DECID |
26 | 19, 25 | impbida 591 | . . . . 5 DECID |
27 | 26 | pm5.74da 441 | . . . 4 DECID |
28 | 27 | albidv 1817 | . . 3 DECID |
29 | isomni 7112 | . . 3 Omni | |
30 | iswomni 7141 | . . . . . 6 WOmni DECID | |
31 | ismkv 7129 | . . . . . 6 Markov | |
32 | 30, 31 | anbi12d 470 | . . . . 5 WOmni Markov DECID |
33 | 19.26 1474 | . . . . 5 DECID DECID | |
34 | 32, 33 | bitr4di 197 | . . . 4 WOmni Markov DECID |
35 | jcab 598 | . . . . 5 DECID DECID | |
36 | 35 | albii 1463 | . . . 4 DECID DECID |
37 | 34, 36 | bitr4di 197 | . . 3 WOmni Markov DECID |
38 | 28, 29, 37 | 3bitr4d 219 | . 2 Omni WOmni Markov |
39 | 1, 3, 38 | pm5.21nii 699 | 1 Omni WOmni Markov |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 wal 1346 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 c0 3414 wf 5194 cfv 5198 c1o 6388 c2o 6389 Omnicomni 7110 Markovcmarkov 7127 WOmnicwomni 7139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4115 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-sn 3589 df-suc 4356 df-fn 5201 df-f 5202 df-1o 6395 df-omni 7111 df-markov 7128 df-womni 7140 |
This theorem is referenced by: lpowlpo 7144 |
Copyright terms: Public domain | W3C validator |