ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raaan Unicode version

Theorem raaan 3556
Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
Hypotheses
Ref Expression
raaan.1  |-  F/ y
ph
raaan.2  |-  F/ x ps
Assertion
Ref Expression
raaan  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem raaan
StepHypRef Expression
1 raaan.1 . . . 4  |-  F/ y
ph
2 raaan.2 . . . 4  |-  F/ x ps
31, 2raaanlem 3555 . . 3  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
43pm5.74i 180 . 2  |-  ( ( E. x  x  e.  A  ->  A. x  e.  A  A. y  e.  A  ( ph  /\ 
ps ) )  <->  ( E. x  x  e.  A  ->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
5 ralm 3554 . 2  |-  ( ( E. x  x  e.  A  ->  A. x  e.  A  A. y  e.  A  ( ph  /\ 
ps ) )  <->  A. x  e.  A  A. y  e.  A  ( ph  /\ 
ps ) )
6 jcab 603 . . 3  |-  ( ( E. x  x  e.  A  ->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )  <->  ( ( E. x  x  e.  A  ->  A. x  e.  A  ph )  /\  ( E. x  x  e.  A  ->  A. y  e.  A  ps ) ) )
7 ralm 3554 . . . 4  |-  ( ( E. x  x  e.  A  ->  A. x  e.  A  ph )  <->  A. x  e.  A  ph )
8 eleq1 2259 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
98cbvexv 1933 . . . . . 6  |-  ( E. x  x  e.  A  <->  E. y  y  e.  A
)
109imbi1i 238 . . . . 5  |-  ( ( E. x  x  e.  A  ->  A. y  e.  A  ps )  <->  ( E. y  y  e.  A  ->  A. y  e.  A  ps )
)
11 ralm 3554 . . . . 5  |-  ( ( E. y  y  e.  A  ->  A. y  e.  A  ps )  <->  A. y  e.  A  ps )
1210, 11bitri 184 . . . 4  |-  ( ( E. x  x  e.  A  ->  A. y  e.  A  ps )  <->  A. y  e.  A  ps )
137, 12anbi12i 460 . . 3  |-  ( ( ( E. x  x  e.  A  ->  A. x  e.  A  ph )  /\  ( E. x  x  e.  A  ->  A. y  e.  A  ps )
)  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
146, 13bitri 184 . 2  |-  ( ( E. x  x  e.  A  ->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
154, 5, 143bitr3i 210 1  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1474   E.wex 1506    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  raaanv  3557
  Copyright terms: Public domain W3C validator