ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mormo Unicode version

Theorem mormo 2677
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo  |-  ( E* x ph  ->  E* x  e.  A  ph )

Proof of Theorem mormo
StepHypRef Expression
1 moan 2083 . 2  |-  ( E* x ph  ->  E* x ( x  e.  A  /\  ph )
)
2 df-rmo 2452 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
31, 2sylibr 133 1  |-  ( E* x ph  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E*wmo 2015    e. wcel 2136   E*wrmo 2447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-rmo 2452
This theorem is referenced by:  reueq  2925  reusv1  4436
  Copyright terms: Public domain W3C validator