ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mormo Unicode version

Theorem mormo 2748
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo  |-  ( E* x ph  ->  E* x  e.  A  ph )

Proof of Theorem mormo
StepHypRef Expression
1 moan 2147 . 2  |-  ( E* x ph  ->  E* x ( x  e.  A  /\  ph )
)
2 df-rmo 2516 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
31, 2sylibr 134 1  |-  ( E* x ph  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E*wmo 2078    e. wcel 2200   E*wrmo 2511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-rmo 2516
This theorem is referenced by:  reueq  3002  reusv1  4549
  Copyright terms: Public domain W3C validator