ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mormo Unicode version

Theorem mormo 2710
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo  |-  ( E* x ph  ->  E* x  e.  A  ph )

Proof of Theorem mormo
StepHypRef Expression
1 moan 2111 . 2  |-  ( E* x ph  ->  E* x ( x  e.  A  /\  ph )
)
2 df-rmo 2480 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
31, 2sylibr 134 1  |-  ( E* x ph  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E*wmo 2043    e. wcel 2164   E*wrmo 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-rmo 2480
This theorem is referenced by:  reueq  2959  reusv1  4489
  Copyright terms: Public domain W3C validator