ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mormo Unicode version

Theorem mormo 2689
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo  |-  ( E* x ph  ->  E* x  e.  A  ph )

Proof of Theorem mormo
StepHypRef Expression
1 moan 2095 . 2  |-  ( E* x ph  ->  E* x ( x  e.  A  /\  ph )
)
2 df-rmo 2463 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
31, 2sylibr 134 1  |-  ( E* x ph  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E*wmo 2027    e. wcel 2148   E*wrmo 2458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-rmo 2463
This theorem is referenced by:  reueq  2938  reusv1  4460
  Copyright terms: Public domain W3C validator