ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbidva Unicode version

Theorem rexeqbidva 2698
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1  |-  ( ph  ->  A  =  B )
raleqbidva.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rexeqbidva  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
)
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem rexeqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21rexbidva 2484 . 2  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  A  ch )
)
3 raleqbidva.1 . . 3  |-  ( ph  ->  A  =  B )
43rexeqdv 2690 . 2  |-  ( ph  ->  ( E. x  e.  A  ch  <->  E. x  e.  B  ch )
)
52, 4bitrd 188 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   E.wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator