ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq Unicode version

Theorem reueq 2951
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem reueq
StepHypRef Expression
1 risset 2518 . 2  |-  ( B  e.  A  <->  E. x  e.  A  x  =  B )
2 moeq 2927 . . . 4  |-  E* x  x  =  B
3 mormo 2702 . . . 4  |-  ( E* x  x  =  B  ->  E* x  e.  A  x  =  B )
42, 3ax-mp 5 . . 3  |-  E* x  e.  A  x  =  B
5 reu5 2703 . . 3  |-  ( E! x  e.  A  x  =  B  <->  ( E. x  e.  A  x  =  B  /\  E* x  e.  A  x  =  B ) )
64, 5mpbiran2 943 . 2  |-  ( E! x  e.  A  x  =  B  <->  E. x  e.  A  x  =  B )
71, 6bitr4i 187 1  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E*wmo 2039    e. wcel 2160   E.wrex 2469   E!wreu 2470   E*wrmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-rex 2474  df-reu 2475  df-rmo 2476  df-v 2754
This theorem is referenced by:  divfnzn  9653  icoshftf1o  10023
  Copyright terms: Public domain W3C validator