ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq Unicode version

Theorem reueq 2929
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem reueq
StepHypRef Expression
1 risset 2498 . 2  |-  ( B  e.  A  <->  E. x  e.  A  x  =  B )
2 moeq 2905 . . . 4  |-  E* x  x  =  B
3 mormo 2681 . . . 4  |-  ( E* x  x  =  B  ->  E* x  e.  A  x  =  B )
42, 3ax-mp 5 . . 3  |-  E* x  e.  A  x  =  B
5 reu5 2682 . . 3  |-  ( E! x  e.  A  x  =  B  <->  ( E. x  e.  A  x  =  B  /\  E* x  e.  A  x  =  B ) )
64, 5mpbiran2 936 . 2  |-  ( E! x  e.  A  x  =  B  <->  E. x  e.  A  x  =  B )
71, 6bitr4i 186 1  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   E*wmo 2020    e. wcel 2141   E.wrex 2449   E!wreu 2450   E*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-rex 2454  df-reu 2455  df-rmo 2456  df-v 2732
This theorem is referenced by:  divfnzn  9580  icoshftf1o  9948
  Copyright terms: Public domain W3C validator