ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq Unicode version

Theorem reueq 2963
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem reueq
StepHypRef Expression
1 risset 2525 . 2  |-  ( B  e.  A  <->  E. x  e.  A  x  =  B )
2 moeq 2939 . . . 4  |-  E* x  x  =  B
3 mormo 2713 . . . 4  |-  ( E* x  x  =  B  ->  E* x  e.  A  x  =  B )
42, 3ax-mp 5 . . 3  |-  E* x  e.  A  x  =  B
5 reu5 2714 . . 3  |-  ( E! x  e.  A  x  =  B  <->  ( E. x  e.  A  x  =  B  /\  E* x  e.  A  x  =  B ) )
64, 5mpbiran2 943 . 2  |-  ( E! x  e.  A  x  =  B  <->  E. x  e.  A  x  =  B )
71, 6bitr4i 187 1  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E*wmo 2046    e. wcel 2167   E.wrex 2476   E!wreu 2477   E*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-rex 2481  df-reu 2482  df-rmo 2483  df-v 2765
This theorem is referenced by:  divfnzn  9695  icoshftf1o  10066
  Copyright terms: Public domain W3C validator