ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq Unicode version

Theorem reueq 2934
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem reueq
StepHypRef Expression
1 risset 2503 . 2  |-  ( B  e.  A  <->  E. x  e.  A  x  =  B )
2 moeq 2910 . . . 4  |-  E* x  x  =  B
3 mormo 2686 . . . 4  |-  ( E* x  x  =  B  ->  E* x  e.  A  x  =  B )
42, 3ax-mp 5 . . 3  |-  E* x  e.  A  x  =  B
5 reu5 2687 . . 3  |-  ( E! x  e.  A  x  =  B  <->  ( E. x  e.  A  x  =  B  /\  E* x  e.  A  x  =  B ) )
64, 5mpbiran2 941 . 2  |-  ( E! x  e.  A  x  =  B  <->  E. x  e.  A  x  =  B )
71, 6bitr4i 187 1  |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   E*wmo 2025    e. wcel 2146   E.wrex 2454   E!wreu 2455   E*wrmo 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-rex 2459  df-reu 2460  df-rmo 2461  df-v 2737
This theorem is referenced by:  divfnzn  9594  icoshftf1o  9962
  Copyright terms: Public domain W3C validator