Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reueq | Unicode version |
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
reueq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2498 | . 2 | |
2 | moeq 2905 | . . . 4 | |
3 | mormo 2681 | . . . 4 | |
4 | 2, 3 | ax-mp 5 | . . 3 |
5 | reu5 2682 | . . 3 | |
6 | 4, 5 | mpbiran2 936 | . 2 |
7 | 1, 6 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wmo 2020 wcel 2141 wrex 2449 wreu 2450 wrmo 2451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-rex 2454 df-reu 2455 df-rmo 2456 df-v 2732 |
This theorem is referenced by: divfnzn 9580 icoshftf1o 9948 |
Copyright terms: Public domain | W3C validator |