Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mormo | GIF version |
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
mormo | ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moan 2083 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rmo 2452 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 133 | 1 ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃*wmo 2015 ∈ wcel 2136 ∃*wrmo 2447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-rmo 2452 |
This theorem is referenced by: reueq 2925 reusv1 4436 |
Copyright terms: Public domain | W3C validator |