| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mormo | GIF version | ||
| Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| mormo | ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moan 2147 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rmo 2516 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃*wmo 2078 ∈ wcel 2200 ∃*wrmo 2511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-rmo 2516 |
| This theorem is referenced by: reueq 3002 reusv1 4548 |
| Copyright terms: Public domain | W3C validator |