ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mormo GIF version

Theorem mormo 2681
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem mormo
StepHypRef Expression
1 moan 2088 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝑥𝐴𝜑))
2 df-rmo 2456 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
31, 2sylibr 133 1 (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  ∃*wmo 2020  wcel 2141  ∃*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-rmo 2456
This theorem is referenced by:  reueq  2929  reusv1  4443
  Copyright terms: Public domain W3C validator