ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusv1 Unicode version

Theorem reusv1 4254
Description: Two ways to express single-valuedness of a class expression  C ( y ). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
reusv1  |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, y
Allowed substitution hints:    ph( y)    A( y)    B( y)    C( y)

Proof of Theorem reusv1
StepHypRef Expression
1 nfra1 2405 . . . 4  |-  F/ y A. y  e.  B  ( ph  ->  x  =  C )
21nfmo 1965 . . 3  |-  F/ y E* x A. y  e.  B  ( ph  ->  x  =  C )
3 rsp 2419 . . . . . . . 8  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  ( y  e.  B  ->  ( ph  ->  x  =  C ) ) )
43impd 251 . . . . . . 7  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  ( (
y  e.  B  /\  ph )  ->  x  =  C ) )
54com12 30 . . . . . 6  |-  ( ( y  e.  B  /\  ph )  ->  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C ) )
65alrimiv 1799 . . . . 5  |-  ( ( y  e.  B  /\  ph )  ->  A. x
( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C )
)
7 moeq 2781 . . . . 5  |-  E* x  x  =  C
8 moim 2009 . . . . 5  |-  ( A. x ( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C )  ->  ( E* x  x  =  C  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) ) )
96, 7, 8mpisyl 1378 . . . 4  |-  ( ( y  e.  B  /\  ph )  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) )
109ex 113 . . 3  |-  ( y  e.  B  ->  ( ph  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) ) )
112, 10rexlimi 2478 . 2  |-  ( E. y  e.  B  ph  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) )
12 mormo 2574 . 2  |-  ( E* x A. y  e.  B  ( ph  ->  x  =  C )  ->  E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) )
13 reu5 2575 . . 3  |-  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  /\  E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
1413rbaib 866 . 2  |-  ( E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
1511, 12, 143syl 17 1  |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1285    = wceq 1287    e. wcel 1436   E*wmo 1946   A.wral 2355   E.wrex 2356   E!wreu 2357   E*wrmo 2358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-v 2617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator