ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusv1 Unicode version

Theorem reusv1 4417
Description: Two ways to express single-valuedness of a class expression  C ( y ). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
reusv1  |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, y
Allowed substitution hints:    ph( y)    A( y)    B( y)    C( y)

Proof of Theorem reusv1
StepHypRef Expression
1 nfra1 2488 . . . 4  |-  F/ y A. y  e.  B  ( ph  ->  x  =  C )
21nfmo 2026 . . 3  |-  F/ y E* x A. y  e.  B  ( ph  ->  x  =  C )
3 rsp 2504 . . . . . . . 8  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  ( y  e.  B  ->  ( ph  ->  x  =  C ) ) )
43impd 252 . . . . . . 7  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  ( (
y  e.  B  /\  ph )  ->  x  =  C ) )
54com12 30 . . . . . 6  |-  ( ( y  e.  B  /\  ph )  ->  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C ) )
65alrimiv 1854 . . . . 5  |-  ( ( y  e.  B  /\  ph )  ->  A. x
( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C )
)
7 moeq 2887 . . . . 5  |-  E* x  x  =  C
8 moim 2070 . . . . 5  |-  ( A. x ( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C )  ->  ( E* x  x  =  C  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) ) )
96, 7, 8mpisyl 1426 . . . 4  |-  ( ( y  e.  B  /\  ph )  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) )
109ex 114 . . 3  |-  ( y  e.  B  ->  ( ph  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) ) )
112, 10rexlimi 2567 . 2  |-  ( E. y  e.  B  ph  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) )
12 mormo 2668 . 2  |-  ( E* x A. y  e.  B  ( ph  ->  x  =  C )  ->  E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) )
13 reu5 2669 . . 3  |-  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  /\  E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
1413rbaib 907 . 2  |-  ( E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
1511, 12, 143syl 17 1  |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333    = wceq 1335   E*wmo 2007    e. wcel 2128   A.wral 2435   E.wrex 2436   E!wreu 2437   E*wrmo 2438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-v 2714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator