ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosub Unicode version

Theorem mosub 2904
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
mosub.1  |-  E* x ph
Assertion
Ref Expression
mosub  |-  E* x E. y ( y  =  A  /\  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem mosub
StepHypRef Expression
1 mosubt 2903 . 2  |-  ( A. y E* x ph  ->  E* x E. y ( y  =  A  /\  ph ) )
2 mosub.1 . 2  |-  E* x ph
31, 2mpg 1439 1  |-  E* x E. y ( y  =  A  /\  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator