ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosub Unicode version

Theorem mosub 2951
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
mosub.1  |-  E* x ph
Assertion
Ref Expression
mosub  |-  E* x E. y ( y  =  A  /\  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem mosub
StepHypRef Expression
1 mosubt 2950 . 2  |-  ( A. y E* x ph  ->  E* x E. y ( y  =  A  /\  ph ) )
2 mosub.1 . 2  |-  E* x ph
31, 2mpg 1474 1  |-  E* x E. y ( y  =  A  /\  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515   E*wmo 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator