ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosub Unicode version

Theorem mosub 2938
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
mosub.1  |-  E* x ph
Assertion
Ref Expression
mosub  |-  E* x E. y ( y  =  A  /\  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem mosub
StepHypRef Expression
1 mosubt 2937 . 2  |-  ( A. y E* x ph  ->  E* x E. y ( y  =  A  /\  ph ) )
2 mosub.1 . 2  |-  E* x ph
31, 2mpg 1462 1  |-  E* x E. y ( y  =  A  /\  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503   E*wmo 2043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator