Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mosub | GIF version |
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
mosub.1 | ⊢ ∃*𝑥𝜑 |
Ref | Expression |
---|---|
mosub | ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosubt 2907 | . 2 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) | |
2 | mosub.1 | . 2 ⊢ ∃*𝑥𝜑 | |
3 | 1, 2 | mpg 1444 | 1 ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |