| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosub | GIF version | ||
| Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| mosub.1 | ⊢ ∃*𝑥𝜑 |
| Ref | Expression |
|---|---|
| mosub | ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mosubt 2949 | . 2 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) | |
| 2 | mosub.1 | . 2 ⊢ ∃*𝑥𝜑 | |
| 3 | 1, 2 | mpg 1473 | 1 ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∃wex 1514 ∃*wmo 2054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |