![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mosub | GIF version |
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
mosub.1 | ⊢ ∃*𝑥𝜑 |
Ref | Expression |
---|---|
mosub | ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosubt 2929 | . 2 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) | |
2 | mosub.1 | . 2 ⊢ ∃*𝑥𝜑 | |
3 | 1, 2 | mpg 1462 | 1 ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∃*wmo 2039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |