| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosub | GIF version | ||
| Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| mosub.1 | ⊢ ∃*𝑥𝜑 |
| Ref | Expression |
|---|---|
| mosub | ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mosubt 2950 | . 2 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) | |
| 2 | mosub.1 | . 2 ⊢ ∃*𝑥𝜑 | |
| 3 | 1, 2 | mpg 1474 | 1 ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1515 ∃*wmo 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |