ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosub GIF version

Theorem mosub 2981
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
mosub.1 ∃*𝑥𝜑
Assertion
Ref Expression
mosub ∃*𝑥𝑦(𝑦 = 𝐴𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mosub
StepHypRef Expression
1 mosubt 2980 . 2 (∀𝑦∃*𝑥𝜑 → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
2 mosub.1 . 2 ∃*𝑥𝜑
31, 2mpg 1497 1 ∃*𝑥𝑦(𝑦 = 𝐴𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  ∃*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator