| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3and | Unicode version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 |
|
| mp3and.2 |
|
| mp3and.3 |
|
| mp3and.4 |
|
| Ref | Expression |
|---|---|
| mp3and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 |
. . 3
| |
| 2 | mp3and.2 |
. . 3
| |
| 3 | mp3and.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1179 |
. 2
|
| 5 | mp3and.4 |
. 2
| |
| 6 | 4, 5 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: eqsuptid 7072 eqinftid 7096 updjud 7157 suprzcl2dc 10346 seq3f1olemstep 10623 bezoutlemsup 12201 mhmlem 13320 |
| Copyright terms: Public domain | W3C validator |