Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3and | Unicode version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | |
mp3and.2 | |
mp3and.3 | |
mp3and.4 |
Ref | Expression |
---|---|
mp3and |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 | |
2 | mp3and.2 | . . 3 | |
3 | mp3and.3 | . . 3 | |
4 | 1, 2, 3 | 3jca 1167 | . 2 |
5 | mp3and.4 | . 2 | |
6 | 4, 5 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: eqsuptid 6962 eqinftid 6986 updjud 7047 seq3f1olemstep 10436 suprzcl2dc 11888 bezoutlemsup 11942 |
Copyright terms: Public domain | W3C validator |