| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3and | Unicode version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| mp3and.1 | 
 | 
| mp3and.2 | 
 | 
| mp3and.3 | 
 | 
| mp3and.4 | 
 | 
| Ref | Expression | 
|---|---|
| mp3and | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3and.1 | 
. . 3
 | |
| 2 | mp3and.2 | 
. . 3
 | |
| 3 | mp3and.3 | 
. . 3
 | |
| 4 | 1, 2, 3 | 3jca 1179 | 
. 2
 | 
| 5 | mp3and.4 | 
. 2
 | |
| 6 | 4, 5 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: eqsuptid 7063 eqinftid 7087 updjud 7148 suprzcl2dc 10329 seq3f1olemstep 10606 bezoutlemsup 12176 mhmlem 13244 | 
| Copyright terms: Public domain | W3C validator |