ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinftid Unicode version

Theorem eqinftid 7149
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypotheses
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
eqinftid.2  |-  ( ph  ->  C  e.  A )
eqinftid.3  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
eqinftid.4  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )
Assertion
Ref Expression
eqinftid  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Distinct variable groups:    u, A, v, y, z    ph, u, v    u, R, v, y, z    u, B, v, y, z    u, C, v, y, z    ph, y
Allowed substitution hint:    ph( z)

Proof of Theorem eqinftid
StepHypRef Expression
1 eqinftid.2 . 2  |-  ( ph  ->  C  e.  A )
2 eqinftid.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
32ralrimiva 2581 . 2  |-  ( ph  ->  A. y  e.  B  -.  y R C )
4 eqinftid.4 . . . 4  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )
54expr 375 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( C R y  ->  E. z  e.  B  z R
y ) )
65ralrimiva 2581 . 2  |-  ( ph  ->  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) )
7 eqinfti.ti . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87eqinfti 7148 . 2  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  -> inf ( B ,  A ,  R )  =  C ) )
91, 3, 6, 8mp3and 1353 1  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059  infcinf 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-cnv 4701  df-iota 5251  df-riota 5922  df-sup 7112  df-inf 7113
This theorem is referenced by:  infminti  7155
  Copyright terms: Public domain W3C validator