ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinftid Unicode version

Theorem eqinftid 6998
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypotheses
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
eqinftid.2  |-  ( ph  ->  C  e.  A )
eqinftid.3  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
eqinftid.4  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )
Assertion
Ref Expression
eqinftid  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Distinct variable groups:    u, A, v, y, z    ph, u, v    u, R, v, y, z    u, B, v, y, z    u, C, v, y, z    ph, y
Allowed substitution hint:    ph( z)

Proof of Theorem eqinftid
StepHypRef Expression
1 eqinftid.2 . 2  |-  ( ph  ->  C  e.  A )
2 eqinftid.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
32ralrimiva 2543 . 2  |-  ( ph  ->  A. y  e.  B  -.  y R C )
4 eqinftid.4 . . . 4  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )
54expr 373 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( C R y  ->  E. z  e.  B  z R
y ) )
65ralrimiva 2543 . 2  |-  ( ph  ->  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) )
7 eqinfti.ti . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87eqinfti 6997 . 2  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  -> inf ( B ,  A ,  R )  =  C ) )
91, 3, 6, 8mp3and 1335 1  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989  infcinf 6960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-cnv 4619  df-iota 5160  df-riota 5809  df-sup 6961  df-inf 6962
This theorem is referenced by:  infminti  7004
  Copyright terms: Public domain W3C validator