ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmlem Unicode version

Theorem mhmlem 13184
Description: Lemma for mhmmnd 13186 and ghmgrp 13188. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
mhmlem.a  |-  ( ph  ->  A  e.  X )
mhmlem.b  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
mhmlem  |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) )
Distinct variable groups:    x, F, y   
x,  .+ , y    x, X, y    x,  .+^ , y    ph, x, y    x, A, y    y, B
Allowed substitution hint:    B( x)

Proof of Theorem mhmlem
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 mhmlem.a . 2  |-  ( ph  ->  A  e.  X )
3 mhmlem.b . 2  |-  ( ph  ->  B  e.  X )
4 eleq1 2256 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  X  <->  A  e.  X ) )
543anbi2d 1328 . . . . 5  |-  ( x  =  A  ->  (
( ph  /\  x  e.  X  /\  y  e.  X )  <->  ( ph  /\  A  e.  X  /\  y  e.  X )
) )
6 fvoveq1 5941 . . . . . 6  |-  ( x  =  A  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( A  .+  y ) ) )
7 fveq2 5554 . . . . . . 7  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
87oveq1d 5933 . . . . . 6  |-  ( x  =  A  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  A )  .+^  ( F `
 y ) ) )
96, 8eqeq12d 2208 . . . . 5  |-  ( x  =  A  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( A  .+  y
) )  =  ( ( F `  A
)  .+^  ( F `  y ) ) ) )
105, 9imbi12d 234 . . . 4  |-  ( x  =  A  ->  (
( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )  <-> 
( ( ph  /\  A  e.  X  /\  y  e.  X )  ->  ( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) ) ) ) )
11 eleq1 2256 . . . . . 6  |-  ( y  =  B  ->  (
y  e.  X  <->  B  e.  X ) )
12113anbi3d 1329 . . . . 5  |-  ( y  =  B  ->  (
( ph  /\  A  e.  X  /\  y  e.  X )  <->  ( ph  /\  A  e.  X  /\  B  e.  X )
) )
13 oveq2 5926 . . . . . . 7  |-  ( y  =  B  ->  ( A  .+  y )  =  ( A  .+  B
) )
1413fveq2d 5558 . . . . . 6  |-  ( y  =  B  ->  ( F `  ( A  .+  y ) )  =  ( F `  ( A  .+  B ) ) )
15 fveq2 5554 . . . . . . 7  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
1615oveq2d 5934 . . . . . 6  |-  ( y  =  B  ->  (
( F `  A
)  .+^  ( F `  y ) )  =  ( ( F `  A )  .+^  ( F `
 B ) ) )
1714, 16eqeq12d 2208 . . . . 5  |-  ( y  =  B  ->  (
( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) )  <->  ( F `  ( A  .+  B ) )  =  ( ( F `  A ) 
.+^  ( F `  B ) ) ) )
1812, 17imbi12d 234 . . . 4  |-  ( y  =  B  ->  (
( ( ph  /\  A  e.  X  /\  y  e.  X )  ->  ( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) ) )  <->  ( ( ph  /\  A  e.  X  /\  B  e.  X
)  ->  ( F `  ( A  .+  B
) )  =  ( ( F `  A
)  .+^  ( F `  B ) ) ) ) )
19 ghmgrp.f . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
2010, 18, 19vtocl2g 2824 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( ph  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) ) )
212, 3, 20syl2anc 411 . 2  |-  ( ph  ->  ( ( ph  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) ) )
221, 2, 3, 21mp3and 1351 1  |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  mhmid  13185  mhmmnd  13186  ghmgrp  13188  ghmcmn  13397
  Copyright terms: Public domain W3C validator