ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmlem Unicode version

Theorem mhmlem 13565
Description: Lemma for mhmmnd 13567 and ghmgrp 13569. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
mhmlem.a  |-  ( ph  ->  A  e.  X )
mhmlem.b  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
mhmlem  |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) )
Distinct variable groups:    x, F, y   
x,  .+ , y    x, X, y    x,  .+^ , y    ph, x, y    x, A, y    y, B
Allowed substitution hint:    B( x)

Proof of Theorem mhmlem
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 mhmlem.a . 2  |-  ( ph  ->  A  e.  X )
3 mhmlem.b . 2  |-  ( ph  ->  B  e.  X )
4 eleq1 2270 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  X  <->  A  e.  X ) )
543anbi2d 1330 . . . . 5  |-  ( x  =  A  ->  (
( ph  /\  x  e.  X  /\  y  e.  X )  <->  ( ph  /\  A  e.  X  /\  y  e.  X )
) )
6 fvoveq1 5990 . . . . . 6  |-  ( x  =  A  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( A  .+  y ) ) )
7 fveq2 5599 . . . . . . 7  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
87oveq1d 5982 . . . . . 6  |-  ( x  =  A  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  A )  .+^  ( F `
 y ) ) )
96, 8eqeq12d 2222 . . . . 5  |-  ( x  =  A  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( A  .+  y
) )  =  ( ( F `  A
)  .+^  ( F `  y ) ) ) )
105, 9imbi12d 234 . . . 4  |-  ( x  =  A  ->  (
( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )  <-> 
( ( ph  /\  A  e.  X  /\  y  e.  X )  ->  ( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) ) ) ) )
11 eleq1 2270 . . . . . 6  |-  ( y  =  B  ->  (
y  e.  X  <->  B  e.  X ) )
12113anbi3d 1331 . . . . 5  |-  ( y  =  B  ->  (
( ph  /\  A  e.  X  /\  y  e.  X )  <->  ( ph  /\  A  e.  X  /\  B  e.  X )
) )
13 oveq2 5975 . . . . . . 7  |-  ( y  =  B  ->  ( A  .+  y )  =  ( A  .+  B
) )
1413fveq2d 5603 . . . . . 6  |-  ( y  =  B  ->  ( F `  ( A  .+  y ) )  =  ( F `  ( A  .+  B ) ) )
15 fveq2 5599 . . . . . . 7  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
1615oveq2d 5983 . . . . . 6  |-  ( y  =  B  ->  (
( F `  A
)  .+^  ( F `  y ) )  =  ( ( F `  A )  .+^  ( F `
 B ) ) )
1714, 16eqeq12d 2222 . . . . 5  |-  ( y  =  B  ->  (
( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) )  <->  ( F `  ( A  .+  B ) )  =  ( ( F `  A ) 
.+^  ( F `  B ) ) ) )
1812, 17imbi12d 234 . . . 4  |-  ( y  =  B  ->  (
( ( ph  /\  A  e.  X  /\  y  e.  X )  ->  ( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) ) )  <->  ( ( ph  /\  A  e.  X  /\  B  e.  X
)  ->  ( F `  ( A  .+  B
) )  =  ( ( F `  A
)  .+^  ( F `  B ) ) ) ) )
19 ghmgrp.f . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
2010, 18, 19vtocl2g 2842 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( ph  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) ) )
212, 3, 20syl2anc 411 . 2  |-  ( ph  ->  ( ( ph  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) ) )
221, 2, 3, 21mp3and 1353 1  |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  mhmid  13566  mhmmnd  13567  ghmgrp  13569  ghmcmn  13778
  Copyright terms: Public domain W3C validator