| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmlem | Unicode version | ||
| Description: Lemma for mhmmnd 13246 and ghmgrp 13248. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f |
|
| mhmlem.a |
|
| mhmlem.b |
|
| Ref | Expression |
|---|---|
| mhmlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | mhmlem.a |
. 2
| |
| 3 | mhmlem.b |
. 2
| |
| 4 | eleq1 2259 |
. . . . . 6
| |
| 5 | 4 | 3anbi2d 1328 |
. . . . 5
|
| 6 | fvoveq1 5945 |
. . . . . 6
| |
| 7 | fveq2 5558 |
. . . . . . 7
| |
| 8 | 7 | oveq1d 5937 |
. . . . . 6
|
| 9 | 6, 8 | eqeq12d 2211 |
. . . . 5
|
| 10 | 5, 9 | imbi12d 234 |
. . . 4
|
| 11 | eleq1 2259 |
. . . . . 6
| |
| 12 | 11 | 3anbi3d 1329 |
. . . . 5
|
| 13 | oveq2 5930 |
. . . . . . 7
| |
| 14 | 13 | fveq2d 5562 |
. . . . . 6
|
| 15 | fveq2 5558 |
. . . . . . 7
| |
| 16 | 15 | oveq2d 5938 |
. . . . . 6
|
| 17 | 14, 16 | eqeq12d 2211 |
. . . . 5
|
| 18 | 12, 17 | imbi12d 234 |
. . . 4
|
| 19 | ghmgrp.f |
. . . 4
| |
| 20 | 10, 18, 19 | vtocl2g 2828 |
. . 3
|
| 21 | 2, 3, 20 | syl2anc 411 |
. 2
|
| 22 | 1, 2, 3, 21 | mp3and 1351 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: mhmid 13245 mhmmnd 13246 ghmgrp 13248 ghmcmn 13457 |
| Copyright terms: Public domain | W3C validator |