Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mhmlem | Unicode version |
Description: Lemma for mhmmnd 12831 and ghmgrp 12833. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
Ref | Expression |
---|---|
ghmgrp.f | |
mhmlem.a | |
mhmlem.b |
Ref | Expression |
---|---|
mhmlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | mhmlem.a | . 2 | |
3 | mhmlem.b | . 2 | |
4 | eleq1 2234 | . . . . . 6 | |
5 | 4 | 3anbi2d 1313 | . . . . 5 |
6 | fvoveq1 5880 | . . . . . 6 | |
7 | fveq2 5499 | . . . . . . 7 | |
8 | 7 | oveq1d 5872 | . . . . . 6 |
9 | 6, 8 | eqeq12d 2186 | . . . . 5 |
10 | 5, 9 | imbi12d 233 | . . . 4 |
11 | eleq1 2234 | . . . . . 6 | |
12 | 11 | 3anbi3d 1314 | . . . . 5 |
13 | oveq2 5865 | . . . . . . 7 | |
14 | 13 | fveq2d 5503 | . . . . . 6 |
15 | fveq2 5499 | . . . . . . 7 | |
16 | 15 | oveq2d 5873 | . . . . . 6 |
17 | 14, 16 | eqeq12d 2186 | . . . . 5 |
18 | 12, 17 | imbi12d 233 | . . . 4 |
19 | ghmgrp.f | . . . 4 | |
20 | 10, 18, 19 | vtocl2g 2795 | . . 3 |
21 | 2, 3, 20 | syl2anc 409 | . 2 |
22 | 1, 2, 3, 21 | mp3and 1336 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 974 wceq 1349 wcel 2142 cfv 5200 (class class class)co 5857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-rex 2455 df-v 2733 df-un 3126 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-br 3991 df-iota 5162 df-fv 5208 df-ov 5860 |
This theorem is referenced by: mhmid 12830 mhmmnd 12831 ghmgrp 12833 |
Copyright terms: Public domain | W3C validator |