| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmlem | Unicode version | ||
| Description: Lemma for mhmmnd 13567 and ghmgrp 13569. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f |
|
| mhmlem.a |
|
| mhmlem.b |
|
| Ref | Expression |
|---|---|
| mhmlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | mhmlem.a |
. 2
| |
| 3 | mhmlem.b |
. 2
| |
| 4 | eleq1 2270 |
. . . . . 6
| |
| 5 | 4 | 3anbi2d 1330 |
. . . . 5
|
| 6 | fvoveq1 5990 |
. . . . . 6
| |
| 7 | fveq2 5599 |
. . . . . . 7
| |
| 8 | 7 | oveq1d 5982 |
. . . . . 6
|
| 9 | 6, 8 | eqeq12d 2222 |
. . . . 5
|
| 10 | 5, 9 | imbi12d 234 |
. . . 4
|
| 11 | eleq1 2270 |
. . . . . 6
| |
| 12 | 11 | 3anbi3d 1331 |
. . . . 5
|
| 13 | oveq2 5975 |
. . . . . . 7
| |
| 14 | 13 | fveq2d 5603 |
. . . . . 6
|
| 15 | fveq2 5599 |
. . . . . . 7
| |
| 16 | 15 | oveq2d 5983 |
. . . . . 6
|
| 17 | 14, 16 | eqeq12d 2222 |
. . . . 5
|
| 18 | 12, 17 | imbi12d 234 |
. . . 4
|
| 19 | ghmgrp.f |
. . . 4
| |
| 20 | 10, 18, 19 | vtocl2g 2842 |
. . 3
|
| 21 | 2, 3, 20 | syl2anc 411 |
. 2
|
| 22 | 1, 2, 3, 21 | mp3and 1353 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: mhmid 13566 mhmmnd 13567 ghmgrp 13569 ghmcmn 13778 |
| Copyright terms: Public domain | W3C validator |