| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mhmlem | Unicode version | ||
| Description: Lemma for mhmmnd 13246 and ghmgrp 13248. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| ghmgrp.f | 
 | 
| mhmlem.a | 
 | 
| mhmlem.b | 
 | 
| Ref | Expression | 
|---|---|
| mhmlem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | 
. 2
 | |
| 2 | mhmlem.a | 
. 2
 | |
| 3 | mhmlem.b | 
. 2
 | |
| 4 | eleq1 2259 | 
. . . . . 6
 | |
| 5 | 4 | 3anbi2d 1328 | 
. . . . 5
 | 
| 6 | fvoveq1 5945 | 
. . . . . 6
 | |
| 7 | fveq2 5558 | 
. . . . . . 7
 | |
| 8 | 7 | oveq1d 5937 | 
. . . . . 6
 | 
| 9 | 6, 8 | eqeq12d 2211 | 
. . . . 5
 | 
| 10 | 5, 9 | imbi12d 234 | 
. . . 4
 | 
| 11 | eleq1 2259 | 
. . . . . 6
 | |
| 12 | 11 | 3anbi3d 1329 | 
. . . . 5
 | 
| 13 | oveq2 5930 | 
. . . . . . 7
 | |
| 14 | 13 | fveq2d 5562 | 
. . . . . 6
 | 
| 15 | fveq2 5558 | 
. . . . . . 7
 | |
| 16 | 15 | oveq2d 5938 | 
. . . . . 6
 | 
| 17 | 14, 16 | eqeq12d 2211 | 
. . . . 5
 | 
| 18 | 12, 17 | imbi12d 234 | 
. . . 4
 | 
| 19 | ghmgrp.f | 
. . . 4
 | |
| 20 | 10, 18, 19 | vtocl2g 2828 | 
. . 3
 | 
| 21 | 2, 3, 20 | syl2anc 411 | 
. 2
 | 
| 22 | 1, 2, 3, 21 | mp3and 1351 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: mhmid 13245 mhmmnd 13246 ghmgrp 13248 ghmcmn 13457 | 
| Copyright terms: Public domain | W3C validator |