ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsuptid Unicode version

Theorem eqsuptid 7125
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
eqsuptid.2  |-  ( ph  ->  C  e.  A )
eqsuptid.3  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
eqsuptid.4  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )
Assertion
Ref Expression
eqsuptid  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Distinct variable groups:    u, A, v, y, z    y, B, z    u, R, v, y, z    ph, u, v, y    y, C, u, v    u, B, v, z    ph, y
Allowed substitution hints:    ph( z)    C( z)

Proof of Theorem eqsuptid
StepHypRef Expression
1 eqsuptid.2 . 2  |-  ( ph  ->  C  e.  A )
2 eqsuptid.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
32ralrimiva 2581 . 2  |-  ( ph  ->  A. y  e.  B  -.  C R y )
4 eqsuptid.4 . . . 4  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )
54expr 375 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
y R C  ->  E. z  e.  B  y R z ) )
65ralrimiva 2581 . 2  |-  ( ph  ->  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )
7 supmoti.ti . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87eqsupti 7124 . 2  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
91, 3, 6, 8mp3and 1353 1  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059   supcsup 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-riota 5922  df-sup 7112
This theorem is referenced by:  supmaxti  7132  supisoti  7138  xrmaxaddlem  11686  dfgcd2  12450
  Copyright terms: Public domain W3C validator