ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsuptid Unicode version

Theorem eqsuptid 7063
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
eqsuptid.2  |-  ( ph  ->  C  e.  A )
eqsuptid.3  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
eqsuptid.4  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )
Assertion
Ref Expression
eqsuptid  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Distinct variable groups:    u, A, v, y, z    y, B, z    u, R, v, y, z    ph, u, v, y    y, C, u, v    u, B, v, z    ph, y
Allowed substitution hints:    ph( z)    C( z)

Proof of Theorem eqsuptid
StepHypRef Expression
1 eqsuptid.2 . 2  |-  ( ph  ->  C  e.  A )
2 eqsuptid.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
32ralrimiva 2570 . 2  |-  ( ph  ->  A. y  e.  B  -.  C R y )
4 eqsuptid.4 . . . 4  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )
54expr 375 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
y R C  ->  E. z  e.  B  y R z ) )
65ralrimiva 2570 . 2  |-  ( ph  ->  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )
7 supmoti.ti . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87eqsupti 7062 . 2  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
91, 3, 6, 8mp3and 1351 1  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4033   supcsup 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-riota 5877  df-sup 7050
This theorem is referenced by:  supmaxti  7070  supisoti  7076  xrmaxaddlem  11425  dfgcd2  12181
  Copyright terms: Public domain W3C validator