Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3f1olemstep | Unicode version |
Description: Lemma for seq3f1o 10381. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1o.1 | |
iseqf1o.2 | |
iseqf1o.3 | |
iseqf1o.4 | |
iseqf1o.6 | |
iseqf1o.7 | |
iseqf1olemstep.k | |
iseqf1olemstep.j | |
iseqf1olemstep.const | ..^ |
seq3f1olemstep.jp | |
seq3f1olemstep.p |
Ref | Expression |
---|---|
seq3f1olemstep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemstep.j | . . . . . 6 | |
2 | f1of 5407 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | iseqf1olemstep.k | . . . . . . 7 | |
5 | elfzel1 9905 | . . . . . . 7 | |
6 | 4, 5 | syl 14 | . . . . . 6 |
7 | elfzel2 9904 | . . . . . . 7 | |
8 | 4, 7 | syl 14 | . . . . . 6 |
9 | 6, 8 | fzfigd 10308 | . . . . 5 |
10 | fex 5687 | . . . . 5 | |
11 | 3, 9, 10 | syl2anc 409 | . . . 4 |
12 | 11 | adantr 274 | . . 3 |
13 | 1 | adantr 274 | . . . 4 |
14 | iseqf1olemstep.const | . . . . . . 7 ..^ | |
15 | 14 | adantr 274 | . . . . . 6 ..^ |
16 | eqcom 2156 | . . . . . . . . . 10 | |
17 | 16 | biimpi 119 | . . . . . . . . 9 |
18 | 17 | adantl 275 | . . . . . . . 8 |
19 | f1ocnvfvb 5721 | . . . . . . . . . 10 | |
20 | 1, 4, 4, 19 | syl3anc 1217 | . . . . . . . . 9 |
21 | 20 | adantr 274 | . . . . . . . 8 |
22 | 18, 21 | mpbird 166 | . . . . . . 7 |
23 | elfzelz 9906 | . . . . . . . . . 10 | |
24 | 4, 23 | syl 14 | . . . . . . . . 9 |
25 | 24 | adantr 274 | . . . . . . . 8 |
26 | fveq2 5461 | . . . . . . . . . 10 | |
27 | id 19 | . . . . . . . . . 10 | |
28 | 26, 27 | eqeq12d 2169 | . . . . . . . . 9 |
29 | 28 | ralsng 3595 | . . . . . . . 8 |
30 | 25, 29 | syl 14 | . . . . . . 7 |
31 | 22, 30 | mpbird 166 | . . . . . 6 |
32 | ralun 3285 | . . . . . 6 ..^ ..^ | |
33 | 15, 31, 32 | syl2anc 409 | . . . . 5 ..^ |
34 | elfzuz 9902 | . . . . . . . 8 | |
35 | fzisfzounsn 10113 | . . . . . . . 8 ..^ | |
36 | 4, 34, 35 | 3syl 17 | . . . . . . 7 ..^ |
37 | 36 | raleqdv 2655 | . . . . . 6 ..^ |
38 | 37 | adantr 274 | . . . . 5 ..^ |
39 | 33, 38 | mpbird 166 | . . . 4 |
40 | seq3f1olemstep.jp | . . . . 5 | |
41 | 40 | adantr 274 | . . . 4 |
42 | 13, 39, 41 | 3jca 1162 | . . 3 |
43 | nfcv 2296 | . . . 4 | |
44 | nfv 1505 | . . . . 5 | |
45 | nfv 1505 | . . . . 5 | |
46 | nfcv 2296 | . . . . . . . 8 | |
47 | nfcv 2296 | . . . . . . . 8 | |
48 | nfcsb1v 3060 | . . . . . . . 8 | |
49 | 46, 47, 48 | nfseq 10332 | . . . . . . 7 |
50 | nfcv 2296 | . . . . . . 7 | |
51 | 49, 50 | nffv 5471 | . . . . . 6 |
52 | 51 | nfeq1 2306 | . . . . 5 |
53 | 44, 45, 52 | nf3an 1543 | . . . 4 |
54 | f1oeq1 5396 | . . . . 5 | |
55 | fveq1 5460 | . . . . . . 7 | |
56 | 55 | eqeq1d 2163 | . . . . . 6 |
57 | 56 | ralbidv 2454 | . . . . 5 |
58 | csbeq1a 3036 | . . . . . . . 8 | |
59 | 58 | seqeq3d 10330 | . . . . . . 7 |
60 | 59 | fveq1d 5463 | . . . . . 6 |
61 | 60 | eqeq1d 2163 | . . . . 5 |
62 | 54, 57, 61 | 3anbi123d 1291 | . . . 4 |
63 | 43, 53, 62 | spcegf 2792 | . . 3 |
64 | 12, 42, 63 | sylc 62 | . 2 |
65 | 4 | adantr 274 | . . . 4 |
66 | 1 | adantr 274 | . . . 4 |
67 | eqid 2154 | . . . 4 | |
68 | 65, 66, 67 | iseqf1olemqf1o 10370 | . . 3 |
69 | 14 | adantr 274 | . . . 4 ..^ |
70 | 65, 66, 67, 69 | iseqf1olemqk 10371 | . . 3 |
71 | iseqf1o.1 | . . . . . 6 | |
72 | 71 | adantlr 469 | . . . . 5 |
73 | iseqf1o.2 | . . . . . 6 | |
74 | 73 | adantlr 469 | . . . . 5 |
75 | iseqf1o.3 | . . . . . 6 | |
76 | 75 | adantlr 469 | . . . . 5 |
77 | iseqf1o.4 | . . . . . 6 | |
78 | 77 | adantr 274 | . . . . 5 |
79 | iseqf1o.6 | . . . . . 6 | |
80 | 79 | adantr 274 | . . . . 5 |
81 | iseqf1o.7 | . . . . . 6 | |
82 | 81 | adantlr 469 | . . . . 5 |
83 | neqne 2332 | . . . . . 6 | |
84 | 83 | adantl 275 | . . . . 5 |
85 | seq3f1olemstep.p | . . . . 5 | |
86 | 72, 74, 76, 78, 80, 82, 65, 66, 69, 84, 67, 85 | seq3f1olemqsum 10377 | . . . 4 |
87 | 40 | adantr 274 | . . . 4 |
88 | 86, 87 | eqtr3d 2189 | . . 3 |
89 | 65, 5 | syl 14 | . . . . 5 |
90 | 65, 7 | syl 14 | . . . . 5 |
91 | 89, 90 | fzfigd 10308 | . . . 4 |
92 | mptexg 5685 | . . . 4 | |
93 | nfcv 2296 | . . . . 5 | |
94 | nfv 1505 | . . . . . 6 | |
95 | nfv 1505 | . . . . . 6 | |
96 | nfcsb1v 3060 | . . . . . . . . 9 | |
97 | 46, 47, 96 | nfseq 10332 | . . . . . . . 8 |
98 | 97, 50 | nffv 5471 | . . . . . . 7 |
99 | 98 | nfeq1 2306 | . . . . . 6 |
100 | 94, 95, 99 | nf3an 1543 | . . . . 5 |
101 | f1oeq1 5396 | . . . . . 6 | |
102 | fveq1 5460 | . . . . . . . 8 | |
103 | 102 | eqeq1d 2163 | . . . . . . 7 |
104 | 103 | ralbidv 2454 | . . . . . 6 |
105 | csbeq1a 3036 | . . . . . . . . 9 | |
106 | 105 | seqeq3d 10330 | . . . . . . . 8 |
107 | 106 | fveq1d 5463 | . . . . . . 7 |
108 | 107 | eqeq1d 2163 | . . . . . 6 |
109 | 101, 104, 108 | 3anbi123d 1291 | . . . . 5 |
110 | 93, 100, 109 | spcegf 2792 | . . . 4 |
111 | 91, 92, 110 | 3syl 17 | . . 3 |
112 | 68, 70, 88, 111 | mp3and 1319 | . 2 |
113 | f1ocnv 5420 | . . . . . . 7 | |
114 | f1of 5407 | . . . . . . 7 | |
115 | 1, 113, 114 | 3syl 17 | . . . . . 6 |
116 | 115, 4 | ffvelrnd 5596 | . . . . 5 |
117 | elfzelz 9906 | . . . . 5 | |
118 | 116, 117 | syl 14 | . . . 4 |
119 | zdceq 9218 | . . . 4 DECID | |
120 | 24, 118, 119 | syl2anc 409 | . . 3 DECID |
121 | exmiddc 822 | . . 3 DECID | |
122 | 120, 121 | syl 14 | . 2 |
123 | 64, 112, 122 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 w3a 963 wceq 1332 wex 1469 wcel 2125 wne 2324 wral 2432 cvv 2709 csb 3027 cun 3096 cif 3501 csn 3556 class class class wbr 3961 cmpt 4021 ccnv 4578 wf 5159 wf1o 5162 cfv 5163 (class class class)co 5814 cfn 6674 c1 7712 cle 7892 cmin 8025 cz 9146 cuz 9418 cfz 9890 ..^cfzo 10019 cseq 10322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-1o 6353 df-er 6469 df-en 6675 df-fin 6677 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-fz 9891 df-fzo 10020 df-seqfrec 10323 |
This theorem is referenced by: seq3f1olemp 10379 |
Copyright terms: Public domain | W3C validator |