| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3f1olemstep | Unicode version | ||
| Description: Lemma for seq3f1o 10660. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1o.1 |
|
| iseqf1o.2 |
|
| iseqf1o.3 |
|
| iseqf1o.4 |
|
| iseqf1o.6 |
|
| iseqf1o.7 |
|
| iseqf1olemstep.k |
|
| iseqf1olemstep.j |
|
| iseqf1olemstep.const |
|
| seq3f1olemstep.jp |
|
| seq3f1olemstep.p |
|
| Ref | Expression |
|---|---|
| seq3f1olemstep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemstep.j |
. . . . . 6
| |
| 2 | f1of 5521 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | iseqf1olemstep.k |
. . . . . . 7
| |
| 5 | elfzel1 10145 |
. . . . . . 7
| |
| 6 | 4, 5 | syl 14 |
. . . . . 6
|
| 7 | elfzel2 10144 |
. . . . . . 7
| |
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 6, 8 | fzfigd 10574 |
. . . . 5
|
| 10 | fex 5812 |
. . . . 5
| |
| 11 | 3, 9, 10 | syl2anc 411 |
. . . 4
|
| 12 | 11 | adantr 276 |
. . 3
|
| 13 | 1 | adantr 276 |
. . . 4
|
| 14 | iseqf1olemstep.const |
. . . . . . 7
| |
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | eqcom 2206 |
. . . . . . . . . 10
| |
| 17 | 16 | biimpi 120 |
. . . . . . . . 9
|
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | f1ocnvfvb 5848 |
. . . . . . . . . 10
| |
| 20 | 1, 4, 4, 19 | syl3anc 1249 |
. . . . . . . . 9
|
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 18, 21 | mpbird 167 |
. . . . . . 7
|
| 23 | elfzelz 10146 |
. . . . . . . . . 10
| |
| 24 | 4, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | 24 | adantr 276 |
. . . . . . . 8
|
| 26 | fveq2 5575 |
. . . . . . . . . 10
| |
| 27 | id 19 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | eqeq12d 2219 |
. . . . . . . . 9
|
| 29 | 28 | ralsng 3672 |
. . . . . . . 8
|
| 30 | 25, 29 | syl 14 |
. . . . . . 7
|
| 31 | 22, 30 | mpbird 167 |
. . . . . 6
|
| 32 | ralun 3354 |
. . . . . 6
| |
| 33 | 15, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | elfzuz 10142 |
. . . . . . . 8
| |
| 35 | fzisfzounsn 10363 |
. . . . . . . 8
| |
| 36 | 4, 34, 35 | 3syl 17 |
. . . . . . 7
|
| 37 | 36 | raleqdv 2707 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | 33, 38 | mpbird 167 |
. . . 4
|
| 40 | seq3f1olemstep.jp |
. . . . 5
| |
| 41 | 40 | adantr 276 |
. . . 4
|
| 42 | 13, 39, 41 | 3jca 1179 |
. . 3
|
| 43 | nfcv 2347 |
. . . 4
| |
| 44 | nfv 1550 |
. . . . 5
| |
| 45 | nfv 1550 |
. . . . 5
| |
| 46 | nfcv 2347 |
. . . . . . . 8
| |
| 47 | nfcv 2347 |
. . . . . . . 8
| |
| 48 | nfcsb1v 3125 |
. . . . . . . 8
| |
| 49 | 46, 47, 48 | nfseq 10600 |
. . . . . . 7
|
| 50 | nfcv 2347 |
. . . . . . 7
| |
| 51 | 49, 50 | nffv 5585 |
. . . . . 6
|
| 52 | 51 | nfeq1 2357 |
. . . . 5
|
| 53 | 44, 45, 52 | nf3an 1588 |
. . . 4
|
| 54 | f1oeq1 5509 |
. . . . 5
| |
| 55 | fveq1 5574 |
. . . . . . 7
| |
| 56 | 55 | eqeq1d 2213 |
. . . . . 6
|
| 57 | 56 | ralbidv 2505 |
. . . . 5
|
| 58 | csbeq1a 3101 |
. . . . . . . 8
| |
| 59 | 58 | seqeq3d 10598 |
. . . . . . 7
|
| 60 | 59 | fveq1d 5577 |
. . . . . 6
|
| 61 | 60 | eqeq1d 2213 |
. . . . 5
|
| 62 | 54, 57, 61 | 3anbi123d 1324 |
. . . 4
|
| 63 | 43, 53, 62 | spcegf 2855 |
. . 3
|
| 64 | 12, 42, 63 | sylc 62 |
. 2
|
| 65 | 4 | adantr 276 |
. . . 4
|
| 66 | 1 | adantr 276 |
. . . 4
|
| 67 | eqid 2204 |
. . . 4
| |
| 68 | 65, 66, 67 | iseqf1olemqf1o 10649 |
. . 3
|
| 69 | 14 | adantr 276 |
. . . 4
|
| 70 | 65, 66, 67, 69 | iseqf1olemqk 10650 |
. . 3
|
| 71 | iseqf1o.1 |
. . . . . 6
| |
| 72 | 71 | adantlr 477 |
. . . . 5
|
| 73 | iseqf1o.2 |
. . . . . 6
| |
| 74 | 73 | adantlr 477 |
. . . . 5
|
| 75 | iseqf1o.3 |
. . . . . 6
| |
| 76 | 75 | adantlr 477 |
. . . . 5
|
| 77 | iseqf1o.4 |
. . . . . 6
| |
| 78 | 77 | adantr 276 |
. . . . 5
|
| 79 | iseqf1o.6 |
. . . . . 6
| |
| 80 | 79 | adantr 276 |
. . . . 5
|
| 81 | iseqf1o.7 |
. . . . . 6
| |
| 82 | 81 | adantlr 477 |
. . . . 5
|
| 83 | neqne 2383 |
. . . . . 6
| |
| 84 | 83 | adantl 277 |
. . . . 5
|
| 85 | seq3f1olemstep.p |
. . . . 5
| |
| 86 | 72, 74, 76, 78, 80, 82, 65, 66, 69, 84, 67, 85 | seq3f1olemqsum 10656 |
. . . 4
|
| 87 | 40 | adantr 276 |
. . . 4
|
| 88 | 86, 87 | eqtr3d 2239 |
. . 3
|
| 89 | 65, 5 | syl 14 |
. . . . 5
|
| 90 | 65, 7 | syl 14 |
. . . . 5
|
| 91 | 89, 90 | fzfigd 10574 |
. . . 4
|
| 92 | mptexg 5808 |
. . . 4
| |
| 93 | nfcv 2347 |
. . . . 5
| |
| 94 | nfv 1550 |
. . . . . 6
| |
| 95 | nfv 1550 |
. . . . . 6
| |
| 96 | nfcsb1v 3125 |
. . . . . . . . 9
| |
| 97 | 46, 47, 96 | nfseq 10600 |
. . . . . . . 8
|
| 98 | 97, 50 | nffv 5585 |
. . . . . . 7
|
| 99 | 98 | nfeq1 2357 |
. . . . . 6
|
| 100 | 94, 95, 99 | nf3an 1588 |
. . . . 5
|
| 101 | f1oeq1 5509 |
. . . . . 6
| |
| 102 | fveq1 5574 |
. . . . . . . 8
| |
| 103 | 102 | eqeq1d 2213 |
. . . . . . 7
|
| 104 | 103 | ralbidv 2505 |
. . . . . 6
|
| 105 | csbeq1a 3101 |
. . . . . . . . 9
| |
| 106 | 105 | seqeq3d 10598 |
. . . . . . . 8
|
| 107 | 106 | fveq1d 5577 |
. . . . . . 7
|
| 108 | 107 | eqeq1d 2213 |
. . . . . 6
|
| 109 | 101, 104, 108 | 3anbi123d 1324 |
. . . . 5
|
| 110 | 93, 100, 109 | spcegf 2855 |
. . . 4
|
| 111 | 91, 92, 110 | 3syl 17 |
. . 3
|
| 112 | 68, 70, 88, 111 | mp3and 1352 |
. 2
|
| 113 | f1ocnv 5534 |
. . . . . . 7
| |
| 114 | f1of 5521 |
. . . . . . 7
| |
| 115 | 1, 113, 114 | 3syl 17 |
. . . . . 6
|
| 116 | 115, 4 | ffvelcdmd 5715 |
. . . . 5
|
| 117 | elfzelz 10146 |
. . . . 5
| |
| 118 | 116, 117 | syl 14 |
. . . 4
|
| 119 | zdceq 9447 |
. . . 4
| |
| 120 | 24, 118, 119 | syl2anc 411 |
. . 3
|
| 121 | exmiddc 837 |
. . 3
| |
| 122 | 120, 121 | syl 14 |
. 2
|
| 123 | 64, 112, 122 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-1o 6501 df-er 6619 df-en 6827 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-fzo 10264 df-seqfrec 10591 |
| This theorem is referenced by: seq3f1olemp 10658 |
| Copyright terms: Public domain | W3C validator |