Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3f1olemstep | Unicode version |
Description: Lemma for seq3f1o 10439. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1o.1 | |
iseqf1o.2 | |
iseqf1o.3 | |
iseqf1o.4 | |
iseqf1o.6 | |
iseqf1o.7 | |
iseqf1olemstep.k | |
iseqf1olemstep.j | |
iseqf1olemstep.const | ..^ |
seq3f1olemstep.jp | |
seq3f1olemstep.p |
Ref | Expression |
---|---|
seq3f1olemstep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemstep.j | . . . . . 6 | |
2 | f1of 5432 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | iseqf1olemstep.k | . . . . . . 7 | |
5 | elfzel1 9959 | . . . . . . 7 | |
6 | 4, 5 | syl 14 | . . . . . 6 |
7 | elfzel2 9958 | . . . . . . 7 | |
8 | 4, 7 | syl 14 | . . . . . 6 |
9 | 6, 8 | fzfigd 10366 | . . . . 5 |
10 | fex 5714 | . . . . 5 | |
11 | 3, 9, 10 | syl2anc 409 | . . . 4 |
12 | 11 | adantr 274 | . . 3 |
13 | 1 | adantr 274 | . . . 4 |
14 | iseqf1olemstep.const | . . . . . . 7 ..^ | |
15 | 14 | adantr 274 | . . . . . 6 ..^ |
16 | eqcom 2167 | . . . . . . . . . 10 | |
17 | 16 | biimpi 119 | . . . . . . . . 9 |
18 | 17 | adantl 275 | . . . . . . . 8 |
19 | f1ocnvfvb 5748 | . . . . . . . . . 10 | |
20 | 1, 4, 4, 19 | syl3anc 1228 | . . . . . . . . 9 |
21 | 20 | adantr 274 | . . . . . . . 8 |
22 | 18, 21 | mpbird 166 | . . . . . . 7 |
23 | elfzelz 9960 | . . . . . . . . . 10 | |
24 | 4, 23 | syl 14 | . . . . . . . . 9 |
25 | 24 | adantr 274 | . . . . . . . 8 |
26 | fveq2 5486 | . . . . . . . . . 10 | |
27 | id 19 | . . . . . . . . . 10 | |
28 | 26, 27 | eqeq12d 2180 | . . . . . . . . 9 |
29 | 28 | ralsng 3616 | . . . . . . . 8 |
30 | 25, 29 | syl 14 | . . . . . . 7 |
31 | 22, 30 | mpbird 166 | . . . . . 6 |
32 | ralun 3304 | . . . . . 6 ..^ ..^ | |
33 | 15, 31, 32 | syl2anc 409 | . . . . 5 ..^ |
34 | elfzuz 9956 | . . . . . . . 8 | |
35 | fzisfzounsn 10171 | . . . . . . . 8 ..^ | |
36 | 4, 34, 35 | 3syl 17 | . . . . . . 7 ..^ |
37 | 36 | raleqdv 2667 | . . . . . 6 ..^ |
38 | 37 | adantr 274 | . . . . 5 ..^ |
39 | 33, 38 | mpbird 166 | . . . 4 |
40 | seq3f1olemstep.jp | . . . . 5 | |
41 | 40 | adantr 274 | . . . 4 |
42 | 13, 39, 41 | 3jca 1167 | . . 3 |
43 | nfcv 2308 | . . . 4 | |
44 | nfv 1516 | . . . . 5 | |
45 | nfv 1516 | . . . . 5 | |
46 | nfcv 2308 | . . . . . . . 8 | |
47 | nfcv 2308 | . . . . . . . 8 | |
48 | nfcsb1v 3078 | . . . . . . . 8 | |
49 | 46, 47, 48 | nfseq 10390 | . . . . . . 7 |
50 | nfcv 2308 | . . . . . . 7 | |
51 | 49, 50 | nffv 5496 | . . . . . 6 |
52 | 51 | nfeq1 2318 | . . . . 5 |
53 | 44, 45, 52 | nf3an 1554 | . . . 4 |
54 | f1oeq1 5421 | . . . . 5 | |
55 | fveq1 5485 | . . . . . . 7 | |
56 | 55 | eqeq1d 2174 | . . . . . 6 |
57 | 56 | ralbidv 2466 | . . . . 5 |
58 | csbeq1a 3054 | . . . . . . . 8 | |
59 | 58 | seqeq3d 10388 | . . . . . . 7 |
60 | 59 | fveq1d 5488 | . . . . . 6 |
61 | 60 | eqeq1d 2174 | . . . . 5 |
62 | 54, 57, 61 | 3anbi123d 1302 | . . . 4 |
63 | 43, 53, 62 | spcegf 2809 | . . 3 |
64 | 12, 42, 63 | sylc 62 | . 2 |
65 | 4 | adantr 274 | . . . 4 |
66 | 1 | adantr 274 | . . . 4 |
67 | eqid 2165 | . . . 4 | |
68 | 65, 66, 67 | iseqf1olemqf1o 10428 | . . 3 |
69 | 14 | adantr 274 | . . . 4 ..^ |
70 | 65, 66, 67, 69 | iseqf1olemqk 10429 | . . 3 |
71 | iseqf1o.1 | . . . . . 6 | |
72 | 71 | adantlr 469 | . . . . 5 |
73 | iseqf1o.2 | . . . . . 6 | |
74 | 73 | adantlr 469 | . . . . 5 |
75 | iseqf1o.3 | . . . . . 6 | |
76 | 75 | adantlr 469 | . . . . 5 |
77 | iseqf1o.4 | . . . . . 6 | |
78 | 77 | adantr 274 | . . . . 5 |
79 | iseqf1o.6 | . . . . . 6 | |
80 | 79 | adantr 274 | . . . . 5 |
81 | iseqf1o.7 | . . . . . 6 | |
82 | 81 | adantlr 469 | . . . . 5 |
83 | neqne 2344 | . . . . . 6 | |
84 | 83 | adantl 275 | . . . . 5 |
85 | seq3f1olemstep.p | . . . . 5 | |
86 | 72, 74, 76, 78, 80, 82, 65, 66, 69, 84, 67, 85 | seq3f1olemqsum 10435 | . . . 4 |
87 | 40 | adantr 274 | . . . 4 |
88 | 86, 87 | eqtr3d 2200 | . . 3 |
89 | 65, 5 | syl 14 | . . . . 5 |
90 | 65, 7 | syl 14 | . . . . 5 |
91 | 89, 90 | fzfigd 10366 | . . . 4 |
92 | mptexg 5710 | . . . 4 | |
93 | nfcv 2308 | . . . . 5 | |
94 | nfv 1516 | . . . . . 6 | |
95 | nfv 1516 | . . . . . 6 | |
96 | nfcsb1v 3078 | . . . . . . . . 9 | |
97 | 46, 47, 96 | nfseq 10390 | . . . . . . . 8 |
98 | 97, 50 | nffv 5496 | . . . . . . 7 |
99 | 98 | nfeq1 2318 | . . . . . 6 |
100 | 94, 95, 99 | nf3an 1554 | . . . . 5 |
101 | f1oeq1 5421 | . . . . . 6 | |
102 | fveq1 5485 | . . . . . . . 8 | |
103 | 102 | eqeq1d 2174 | . . . . . . 7 |
104 | 103 | ralbidv 2466 | . . . . . 6 |
105 | csbeq1a 3054 | . . . . . . . . 9 | |
106 | 105 | seqeq3d 10388 | . . . . . . . 8 |
107 | 106 | fveq1d 5488 | . . . . . . 7 |
108 | 107 | eqeq1d 2174 | . . . . . 6 |
109 | 101, 104, 108 | 3anbi123d 1302 | . . . . 5 |
110 | 93, 100, 109 | spcegf 2809 | . . . 4 |
111 | 91, 92, 110 | 3syl 17 | . . 3 |
112 | 68, 70, 88, 111 | mp3and 1330 | . 2 |
113 | f1ocnv 5445 | . . . . . . 7 | |
114 | f1of 5432 | . . . . . . 7 | |
115 | 1, 113, 114 | 3syl 17 | . . . . . 6 |
116 | 115, 4 | ffvelrnd 5621 | . . . . 5 |
117 | elfzelz 9960 | . . . . 5 | |
118 | 116, 117 | syl 14 | . . . 4 |
119 | zdceq 9266 | . . . 4 DECID | |
120 | 24, 118, 119 | syl2anc 409 | . . 3 DECID |
121 | exmiddc 826 | . . 3 DECID | |
122 | 120, 121 | syl 14 | . 2 |
123 | 64, 112, 122 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wex 1480 wcel 2136 wne 2336 wral 2444 cvv 2726 csb 3045 cun 3114 cif 3520 csn 3576 class class class wbr 3982 cmpt 4043 ccnv 4603 wf 5184 wf1o 5187 cfv 5188 (class class class)co 5842 cfn 6706 c1 7754 cle 7934 cmin 8069 cz 9191 cuz 9466 cfz 9944 ..^cfzo 10077 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 df-seqfrec 10381 |
This theorem is referenced by: seq3f1olemp 10437 |
Copyright terms: Public domain | W3C validator |