ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemstep Unicode version

Theorem seq3f1olemstep 10457
Description: Lemma for seq3f1o 10460. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemstep.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemstep.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemstep.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
seq3f1olemstep.jp  |-  ( ph  ->  (  seq M ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
seq3f1olemstep.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
seq3f1olemstep  |-  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
Distinct variable groups:    .+ , f, x, y, z    f, J, x, y, z    f, K, x, y, z    f, L    f, M, x, y, z    f, N, x, y, z    S, f, x, y, z    ph, x, y, z    x, P, y, z    f, G, x
Allowed substitution hints:    ph( f)    P( f)    F( x, y, z, f)    G( y, z)    L( x, y, z)

Proof of Theorem seq3f1olemstep
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemstep.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
2 f1of 5442 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
4 iseqf1olemstep.k . . . . . . 7  |-  ( ph  ->  K  e.  ( M ... N ) )
5 elfzel1 9980 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
64, 5syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
7 elfzel2 9979 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
84, 7syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
96, 8fzfigd 10387 . . . . 5  |-  ( ph  ->  ( M ... N
)  e.  Fin )
10 fex 5725 . . . . 5  |-  ( ( J : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  J  e.  _V )
113, 9, 10syl2anc 409 . . . 4  |-  ( ph  ->  J  e.  _V )
1211adantr 274 . . 3  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  J  e.  _V )
131adantr 274 . . . 4  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
14 iseqf1olemstep.const . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
1514adantr 274 . . . . . 6  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
16 eqcom 2172 . . . . . . . . . 10  |-  ( K  =  ( `' J `  K )  <->  ( `' J `  K )  =  K )
1716biimpi 119 . . . . . . . . 9  |-  ( K  =  ( `' J `  K )  ->  ( `' J `  K )  =  K )
1817adantl 275 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( `' J `  K )  =  K )
19 f1ocnvfvb 5759 . . . . . . . . . 10  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N )  /\  K  e.  ( M ... N
) )  ->  (
( J `  K
)  =  K  <->  ( `' J `  K )  =  K ) )
201, 4, 4, 19syl3anc 1233 . . . . . . . . 9  |-  ( ph  ->  ( ( J `  K )  =  K  <-> 
( `' J `  K )  =  K ) )
2120adantr 274 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( ( J `  K )  =  K  <->  ( `' J `  K )  =  K ) )
2218, 21mpbird 166 . . . . . . 7  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( J `  K )  =  K )
23 elfzelz 9981 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
244, 23syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
2524adantr 274 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  K  e.  ZZ )
26 fveq2 5496 . . . . . . . . . 10  |-  ( x  =  K  ->  ( J `  x )  =  ( J `  K ) )
27 id 19 . . . . . . . . . 10  |-  ( x  =  K  ->  x  =  K )
2826, 27eqeq12d 2185 . . . . . . . . 9  |-  ( x  =  K  ->  (
( J `  x
)  =  x  <->  ( J `  K )  =  K ) )
2928ralsng 3623 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( A. x  e.  { K }  ( J `  x )  =  x  <-> 
( J `  K
)  =  K ) )
3025, 29syl 14 . . . . . . 7  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( A. x  e.  { K }  ( J `  x )  =  x  <-> 
( J `  K
)  =  K ) )
3122, 30mpbird 166 . . . . . 6  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  { K }  ( J `  x )  =  x )
32 ralun 3309 . . . . . 6  |-  ( ( A. x  e.  ( M..^ K ) ( J `  x )  =  x  /\  A. x  e.  { K }  ( J `  x )  =  x )  ->  A. x  e.  ( ( M..^ K
)  u.  { K } ) ( J `
 x )  =  x )
3315, 31, 32syl2anc 409 . . . . 5  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  ( ( M..^ K
)  u.  { K } ) ( J `
 x )  =  x )
34 elfzuz 9977 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
35 fzisfzounsn 10192 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( M ... K )  =  ( ( M..^ K )  u.  { K }
) )
364, 34, 353syl 17 . . . . . . 7  |-  ( ph  ->  ( M ... K
)  =  ( ( M..^ K )  u. 
{ K } ) )
3736raleqdv 2671 . . . . . 6  |-  ( ph  ->  ( A. x  e.  ( M ... K
) ( J `  x )  =  x  <->  A. x  e.  (
( M..^ K )  u.  { K }
) ( J `  x )  =  x ) )
3837adantr 274 . . . . 5  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( A. x  e.  ( M ... K ) ( J `
 x )  =  x  <->  A. x  e.  ( ( M..^ K )  u.  { K }
) ( J `  x )  =  x ) )
3933, 38mpbird 166 . . . 4  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M ... K
) ( J `  x )  =  x )
40 seq3f1olemstep.jp . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
4140adantr 274 . . . 4  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  (  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
) )
4213, 39, 413jca 1172 . . 3  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
43 nfcv 2312 . . . 4  |-  F/_ f J
44 nfv 1521 . . . . 5  |-  F/ f  J : ( M ... N ) -1-1-onto-> ( M ... N )
45 nfv 1521 . . . . 5  |-  F/ f A. x  e.  ( M ... K ) ( J `  x
)  =  x
46 nfcv 2312 . . . . . . . 8  |-  F/_ f M
47 nfcv 2312 . . . . . . . 8  |-  F/_ f  .+
48 nfcsb1v 3082 . . . . . . . 8  |-  F/_ f [_ J  /  f ]_ P
4946, 47, 48nfseq 10411 . . . . . . 7  |-  F/_ f  seq M (  .+  ,  [_ J  /  f ]_ P )
50 nfcv 2312 . . . . . . 7  |-  F/_ f N
5149, 50nffv 5506 . . . . . 6  |-  F/_ f
(  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)
5251nfeq1 2322 . . . . 5  |-  F/ f (  seq M ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N )
5344, 45, 52nf3an 1559 . . . 4  |-  F/ f ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
54 f1oeq1 5431 . . . . 5  |-  ( f  =  J  ->  (
f : ( M ... N ) -1-1-onto-> ( M ... N )  <->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
55 fveq1 5495 . . . . . . 7  |-  ( f  =  J  ->  (
f `  x )  =  ( J `  x ) )
5655eqeq1d 2179 . . . . . 6  |-  ( f  =  J  ->  (
( f `  x
)  =  x  <->  ( J `  x )  =  x ) )
5756ralbidv 2470 . . . . 5  |-  ( f  =  J  ->  ( A. x  e.  ( M ... K ) ( f `  x )  =  x  <->  A. x  e.  ( M ... K
) ( J `  x )  =  x ) )
58 csbeq1a 3058 . . . . . . . 8  |-  ( f  =  J  ->  P  =  [_ J  /  f ]_ P )
5958seqeq3d 10409 . . . . . . 7  |-  ( f  =  J  ->  seq M (  .+  ,  P )  =  seq M (  .+  ,  [_ J  /  f ]_ P ) )
6059fveq1d 5498 . . . . . 6  |-  ( f  =  J  ->  (  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
) )
6160eqeq1d 2179 . . . . 5  |-  ( f  =  J  ->  (
(  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
)  <->  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
6254, 57, 613anbi123d 1307 . . . 4  |-  ( f  =  J  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
6343, 53, 62spcegf 2813 . . 3  |-  ( J  e.  _V  ->  (
( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
6412, 42, 63sylc 62 . 2  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
654adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  K  e.  ( M ... N ) )
661adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
67 eqid 2170 . . . 4  |-  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) )  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
6865, 66, 67iseqf1olemqf1o 10449 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N ) )
6914adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M..^ K ) ( J `
 x )  =  x )
7065, 66, 67, 69iseqf1olemqk 10450 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M ... K ) ( ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x )
71 iseqf1o.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
7271adantlr 474 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
73 iseqf1o.2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
7473adantlr 474 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
75 iseqf1o.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7675adantlr 474 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
77 iseqf1o.4 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7877adantr 274 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  N  e.  ( ZZ>= `  M ) )
79 iseqf1o.6 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
8079adantr 274 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  F : ( M ... N ) -1-1-onto-> ( M ... N
) )
81 iseqf1o.7 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
8281adantlr 474 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
83 neqne 2348 . . . . . 6  |-  ( -.  K  =  ( `' J `  K )  ->  K  =/=  ( `' J `  K ) )
8483adantl 275 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  K  =/=  ( `' J `  K ) )
85 seq3f1olemstep.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
8672, 74, 76, 78, 80, 82, 65, 66, 69, 84, 67, 85seq3f1olemqsum 10456 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
(  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N ) )
8740adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
(  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
) )
8886, 87eqtr3d 2205 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
(  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )
8965, 5syl 14 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  M  e.  ZZ )
9065, 7syl 14 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  N  e.  ZZ )
9189, 90fzfigd 10387 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
( M ... N
)  e.  Fin )
92 mptexg 5721 . . . 4  |-  ( ( M ... N )  e.  Fin  ->  (
u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
93 nfcv 2312 . . . . 5  |-  F/_ f
( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
94 nfv 1521 . . . . . 6  |-  F/ f ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )
95 nfv 1521 . . . . . 6  |-  F/ f A. x  e.  ( M ... K ) ( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x
96 nfcsb1v 3082 . . . . . . . . 9  |-  F/_ f [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P
9746, 47, 96nfseq 10411 . . . . . . . 8  |-  F/_ f  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P )
9897, 50nffv 5506 . . . . . . 7  |-  F/_ f
(  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )
9998nfeq1 2322 . . . . . 6  |-  F/ f (  seq M ( 
.+  ,  [_ (
u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
)
10094, 95, 99nf3an 1559 . . . . 5  |-  F/ f ( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )
101 f1oeq1 5431 . . . . . 6  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( f : ( M ... N ) -1-1-onto-> ( M ... N )  <-> 
( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N ) ) )
102 fveq1 5495 . . . . . . . 8  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( f `  x
)  =  ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x ) )
103102eqeq1d 2179 . . . . . . 7  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( ( f `  x )  =  x  <-> 
( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x ) )
104103ralbidv 2470 . . . . . 6  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( A. x  e.  ( M ... K
) ( f `  x )  =  x  <->  A. x  e.  ( M ... K ) ( ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x ) )
105 csbeq1a 3058 . . . . . . . . 9  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  ->  P  =  [_ ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) )  /  f ]_ P )
106105seqeq3d 10409 . . . . . . . 8  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  ->  seq M (  .+  ,  P )  =  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) )
107106fveq1d 5498 . . . . . . 7  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
(  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N ) )
108107eqeq1d 2179 . . . . . 6  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N )  <->  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) ) )
109101, 104, 1083anbi123d 1307 . . . . 5  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) ) ) )
11093, 100, 109spcegf 2813 . . . 4  |-  ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V  ->  ( ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
11191, 92, 1103syl 17 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
( ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
11268, 70, 88, 111mp3and 1335 . 2  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
113 f1ocnv 5455 . . . . . . 7  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
114 f1of 5442 . . . . . . 7  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
1151, 113, 1143syl 17 . . . . . 6  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
116115, 4ffvelrnd 5632 . . . . 5  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
117 elfzelz 9981 . . . . 5  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
118116, 117syl 14 . . . 4  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
119 zdceq 9287 . . . 4  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  K  =  ( `' J `  K ) )
12024, 118, 119syl2anc 409 . . 3  |-  ( ph  -> DECID  K  =  ( `' J `  K ) )
121 exmiddc 831 . . 3  |-  (DECID  K  =  ( `' J `  K )  ->  ( K  =  ( `' J `  K )  \/  -.  K  =  ( `' J `  K ) ) )
122120, 121syl 14 . 2  |-  ( ph  ->  ( K  =  ( `' J `  K )  \/  -.  K  =  ( `' J `  K ) ) )
12364, 112, 122mpjaodan 793 1  |-  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   A.wral 2448   _Vcvv 2730   [_csb 3049    u. cun 3119   ifcif 3526   {csn 3583   class class class wbr 3989    |-> cmpt 4050   `'ccnv 4610   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   Fincfn 6718   1c1 7775    <_ cle 7955    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965  ..^cfzo 10098    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  seq3f1olemp  10458
  Copyright terms: Public domain W3C validator