ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemstep Unicode version

Theorem seq3f1olemstep 10378
Description: Lemma for seq3f1o 10381. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemstep.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemstep.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemstep.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
seq3f1olemstep.jp  |-  ( ph  ->  (  seq M ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
seq3f1olemstep.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
seq3f1olemstep  |-  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
Distinct variable groups:    .+ , f, x, y, z    f, J, x, y, z    f, K, x, y, z    f, L    f, M, x, y, z    f, N, x, y, z    S, f, x, y, z    ph, x, y, z    x, P, y, z    f, G, x
Allowed substitution hints:    ph( f)    P( f)    F( x, y, z, f)    G( y, z)    L( x, y, z)

Proof of Theorem seq3f1olemstep
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemstep.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
2 f1of 5407 . . . . . 6  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
4 iseqf1olemstep.k . . . . . . 7  |-  ( ph  ->  K  e.  ( M ... N ) )
5 elfzel1 9905 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
64, 5syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
7 elfzel2 9904 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
84, 7syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
96, 8fzfigd 10308 . . . . 5  |-  ( ph  ->  ( M ... N
)  e.  Fin )
10 fex 5687 . . . . 5  |-  ( ( J : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  J  e.  _V )
113, 9, 10syl2anc 409 . . . 4  |-  ( ph  ->  J  e.  _V )
1211adantr 274 . . 3  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  J  e.  _V )
131adantr 274 . . . 4  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
14 iseqf1olemstep.const . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
1514adantr 274 . . . . . 6  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
16 eqcom 2156 . . . . . . . . . 10  |-  ( K  =  ( `' J `  K )  <->  ( `' J `  K )  =  K )
1716biimpi 119 . . . . . . . . 9  |-  ( K  =  ( `' J `  K )  ->  ( `' J `  K )  =  K )
1817adantl 275 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( `' J `  K )  =  K )
19 f1ocnvfvb 5721 . . . . . . . . . 10  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N )  /\  K  e.  ( M ... N
) )  ->  (
( J `  K
)  =  K  <->  ( `' J `  K )  =  K ) )
201, 4, 4, 19syl3anc 1217 . . . . . . . . 9  |-  ( ph  ->  ( ( J `  K )  =  K  <-> 
( `' J `  K )  =  K ) )
2120adantr 274 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( ( J `  K )  =  K  <->  ( `' J `  K )  =  K ) )
2218, 21mpbird 166 . . . . . . 7  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( J `  K )  =  K )
23 elfzelz 9906 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
244, 23syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
2524adantr 274 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  K  e.  ZZ )
26 fveq2 5461 . . . . . . . . . 10  |-  ( x  =  K  ->  ( J `  x )  =  ( J `  K ) )
27 id 19 . . . . . . . . . 10  |-  ( x  =  K  ->  x  =  K )
2826, 27eqeq12d 2169 . . . . . . . . 9  |-  ( x  =  K  ->  (
( J `  x
)  =  x  <->  ( J `  K )  =  K ) )
2928ralsng 3595 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( A. x  e.  { K }  ( J `  x )  =  x  <-> 
( J `  K
)  =  K ) )
3025, 29syl 14 . . . . . . 7  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( A. x  e.  { K }  ( J `  x )  =  x  <-> 
( J `  K
)  =  K ) )
3122, 30mpbird 166 . . . . . 6  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  { K }  ( J `  x )  =  x )
32 ralun 3285 . . . . . 6  |-  ( ( A. x  e.  ( M..^ K ) ( J `  x )  =  x  /\  A. x  e.  { K }  ( J `  x )  =  x )  ->  A. x  e.  ( ( M..^ K
)  u.  { K } ) ( J `
 x )  =  x )
3315, 31, 32syl2anc 409 . . . . 5  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  ( ( M..^ K
)  u.  { K } ) ( J `
 x )  =  x )
34 elfzuz 9902 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
35 fzisfzounsn 10113 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( M ... K )  =  ( ( M..^ K )  u.  { K }
) )
364, 34, 353syl 17 . . . . . . 7  |-  ( ph  ->  ( M ... K
)  =  ( ( M..^ K )  u. 
{ K } ) )
3736raleqdv 2655 . . . . . 6  |-  ( ph  ->  ( A. x  e.  ( M ... K
) ( J `  x )  =  x  <->  A. x  e.  (
( M..^ K )  u.  { K }
) ( J `  x )  =  x ) )
3837adantr 274 . . . . 5  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( A. x  e.  ( M ... K ) ( J `
 x )  =  x  <->  A. x  e.  ( ( M..^ K )  u.  { K }
) ( J `  x )  =  x ) )
3933, 38mpbird 166 . . . 4  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M ... K
) ( J `  x )  =  x )
40 seq3f1olemstep.jp . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
4140adantr 274 . . . 4  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  (  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
) )
4213, 39, 413jca 1162 . . 3  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
43 nfcv 2296 . . . 4  |-  F/_ f J
44 nfv 1505 . . . . 5  |-  F/ f  J : ( M ... N ) -1-1-onto-> ( M ... N )
45 nfv 1505 . . . . 5  |-  F/ f A. x  e.  ( M ... K ) ( J `  x
)  =  x
46 nfcv 2296 . . . . . . . 8  |-  F/_ f M
47 nfcv 2296 . . . . . . . 8  |-  F/_ f  .+
48 nfcsb1v 3060 . . . . . . . 8  |-  F/_ f [_ J  /  f ]_ P
4946, 47, 48nfseq 10332 . . . . . . 7  |-  F/_ f  seq M (  .+  ,  [_ J  /  f ]_ P )
50 nfcv 2296 . . . . . . 7  |-  F/_ f N
5149, 50nffv 5471 . . . . . 6  |-  F/_ f
(  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)
5251nfeq1 2306 . . . . 5  |-  F/ f (  seq M ( 
.+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N )
5344, 45, 52nf3an 1543 . . . 4  |-  F/ f ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
54 f1oeq1 5396 . . . . 5  |-  ( f  =  J  ->  (
f : ( M ... N ) -1-1-onto-> ( M ... N )  <->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
55 fveq1 5460 . . . . . . 7  |-  ( f  =  J  ->  (
f `  x )  =  ( J `  x ) )
5655eqeq1d 2163 . . . . . 6  |-  ( f  =  J  ->  (
( f `  x
)  =  x  <->  ( J `  x )  =  x ) )
5756ralbidv 2454 . . . . 5  |-  ( f  =  J  ->  ( A. x  e.  ( M ... K ) ( f `  x )  =  x  <->  A. x  e.  ( M ... K
) ( J `  x )  =  x ) )
58 csbeq1a 3036 . . . . . . . 8  |-  ( f  =  J  ->  P  =  [_ J  /  f ]_ P )
5958seqeq3d 10330 . . . . . . 7  |-  ( f  =  J  ->  seq M (  .+  ,  P )  =  seq M (  .+  ,  [_ J  /  f ]_ P ) )
6059fveq1d 5463 . . . . . 6  |-  ( f  =  J  ->  (  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
) )
6160eqeq1d 2163 . . . . 5  |-  ( f  =  J  ->  (
(  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
)  <->  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
6254, 57, 613anbi123d 1291 . . . 4  |-  ( f  =  J  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
6343, 53, 62spcegf 2792 . . 3  |-  ( J  e.  _V  ->  (
( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( J `  x )  =  x  /\  (  seq M
(  .+  ,  [_ J  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
6412, 42, 63sylc 62 . 2  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
654adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  K  e.  ( M ... N ) )
661adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
67 eqid 2154 . . . 4  |-  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) )  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
6865, 66, 67iseqf1olemqf1o 10370 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N ) )
6914adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M..^ K ) ( J `
 x )  =  x )
7065, 66, 67, 69iseqf1olemqk 10371 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  A. x  e.  ( M ... K ) ( ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x )
71 iseqf1o.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
7271adantlr 469 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
73 iseqf1o.2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
7473adantlr 469 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
75 iseqf1o.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7675adantlr 469 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
77 iseqf1o.4 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7877adantr 274 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  N  e.  ( ZZ>= `  M ) )
79 iseqf1o.6 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
8079adantr 274 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  F : ( M ... N ) -1-1-onto-> ( M ... N
) )
81 iseqf1o.7 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
8281adantlr 469 . . . . 5  |-  ( ( ( ph  /\  -.  K  =  ( `' J `  K )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
83 neqne 2332 . . . . . 6  |-  ( -.  K  =  ( `' J `  K )  ->  K  =/=  ( `' J `  K ) )
8483adantl 275 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  K  =/=  ( `' J `  K ) )
85 seq3f1olemstep.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
8672, 74, 76, 78, 80, 82, 65, 66, 69, 84, 67, 85seq3f1olemqsum 10377 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
(  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N ) )
8740adantr 274 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
(  seq M (  .+  ,  [_ J  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
) )
8886, 87eqtr3d 2189 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
(  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )
8965, 5syl 14 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  M  e.  ZZ )
9065, 7syl 14 . . . . 5  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  N  e.  ZZ )
9189, 90fzfigd 10308 . . . 4  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
( M ... N
)  e.  Fin )
92 mptexg 5685 . . . 4  |-  ( ( M ... N )  e.  Fin  ->  (
u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
93 nfcv 2296 . . . . 5  |-  F/_ f
( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
94 nfv 1505 . . . . . 6  |-  F/ f ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )
95 nfv 1505 . . . . . 6  |-  F/ f A. x  e.  ( M ... K ) ( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x
96 nfcsb1v 3060 . . . . . . . . 9  |-  F/_ f [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P
9746, 47, 96nfseq 10332 . . . . . . . 8  |-  F/_ f  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P )
9897, 50nffv 5471 . . . . . . 7  |-  F/_ f
(  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )
9998nfeq1 2306 . . . . . 6  |-  F/ f (  seq M ( 
.+  ,  [_ (
u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
)
10094, 95, 99nf3an 1543 . . . . 5  |-  F/ f ( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )
101 f1oeq1 5396 . . . . . 6  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( f : ( M ... N ) -1-1-onto-> ( M ... N )  <-> 
( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N ) ) )
102 fveq1 5460 . . . . . . . 8  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( f `  x
)  =  ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x ) )
103102eqeq1d 2163 . . . . . . 7  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( ( f `  x )  =  x  <-> 
( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x ) )
104103ralbidv 2454 . . . . . 6  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( A. x  e.  ( M ... K
) ( f `  x )  =  x  <->  A. x  e.  ( M ... K ) ( ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) `  x )  =  x ) )
105 csbeq1a 3036 . . . . . . . . 9  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  ->  P  =  [_ ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) )  /  f ]_ P )
106105seqeq3d 10330 . . . . . . . 8  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  ->  seq M (  .+  ,  P )  =  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) )
107106fveq1d 5463 . . . . . . 7  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
(  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N ) )
108107eqeq1d 2163 . . . . . 6  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N )  <->  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) ) )
109101, 104, 1083anbi123d 1291 . . . . 5  |-  ( f  =  ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  -> 
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) ) ) )
11093, 100, 109spcegf 2792 . . . 4  |-  ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V  ->  ( ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) ) : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
11191, 92, 1103syl 17 . . 3  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  -> 
( ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) ) ) `  x
)  =  x  /\  (  seq M (  .+  ,  [_ ( u  e.  ( M ... N
)  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  / 
f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N
) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
11268, 70, 88, 111mp3and 1319 . 2  |-  ( (
ph  /\  -.  K  =  ( `' J `  K ) )  ->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
113 f1ocnv 5420 . . . . . . 7  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
114 f1of 5407 . . . . . . 7  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
1151, 113, 1143syl 17 . . . . . 6  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
116115, 4ffvelrnd 5596 . . . . 5  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
117 elfzelz 9906 . . . . 5  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
118116, 117syl 14 . . . 4  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
119 zdceq 9218 . . . 4  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  K  =  ( `' J `  K ) )
12024, 118, 119syl2anc 409 . . 3  |-  ( ph  -> DECID  K  =  ( `' J `  K ) )
121 exmiddc 822 . . 3  |-  (DECID  K  =  ( `' J `  K )  ->  ( K  =  ( `' J `  K )  \/  -.  K  =  ( `' J `  K ) ) )
122120, 121syl 14 . 2  |-  ( ph  ->  ( K  =  ( `' J `  K )  \/  -.  K  =  ( `' J `  K ) ) )
12364, 112, 122mpjaodan 788 1  |-  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... K
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1332   E.wex 1469    e. wcel 2125    =/= wne 2324   A.wral 2432   _Vcvv 2709   [_csb 3027    u. cun 3096   ifcif 3501   {csn 3556   class class class wbr 3961    |-> cmpt 4021   `'ccnv 4578   -->wf 5159   -1-1-onto->wf1o 5162   ` cfv 5163  (class class class)co 5814   Fincfn 6674   1c1 7712    <_ cle 7892    - cmin 8025   ZZcz 9146   ZZ>=cuz 9418   ...cfz 9890  ..^cfzo 10019    seqcseq 10322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-1o 6353  df-er 6469  df-en 6675  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-fz 9891  df-fzo 10020  df-seqfrec 10323
This theorem is referenced by:  seq3f1olemp  10379
  Copyright terms: Public domain W3C validator