| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3f1olemstep | Unicode version | ||
| Description: Lemma for seq3f1o 10626. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1o.1 |
|
| iseqf1o.2 |
|
| iseqf1o.3 |
|
| iseqf1o.4 |
|
| iseqf1o.6 |
|
| iseqf1o.7 |
|
| iseqf1olemstep.k |
|
| iseqf1olemstep.j |
|
| iseqf1olemstep.const |
|
| seq3f1olemstep.jp |
|
| seq3f1olemstep.p |
|
| Ref | Expression |
|---|---|
| seq3f1olemstep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemstep.j |
. . . . . 6
| |
| 2 | f1of 5507 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | iseqf1olemstep.k |
. . . . . . 7
| |
| 5 | elfzel1 10116 |
. . . . . . 7
| |
| 6 | 4, 5 | syl 14 |
. . . . . 6
|
| 7 | elfzel2 10115 |
. . . . . . 7
| |
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 6, 8 | fzfigd 10540 |
. . . . 5
|
| 10 | fex 5794 |
. . . . 5
| |
| 11 | 3, 9, 10 | syl2anc 411 |
. . . 4
|
| 12 | 11 | adantr 276 |
. . 3
|
| 13 | 1 | adantr 276 |
. . . 4
|
| 14 | iseqf1olemstep.const |
. . . . . . 7
| |
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | eqcom 2198 |
. . . . . . . . . 10
| |
| 17 | 16 | biimpi 120 |
. . . . . . . . 9
|
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | f1ocnvfvb 5830 |
. . . . . . . . . 10
| |
| 20 | 1, 4, 4, 19 | syl3anc 1249 |
. . . . . . . . 9
|
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 18, 21 | mpbird 167 |
. . . . . . 7
|
| 23 | elfzelz 10117 |
. . . . . . . . . 10
| |
| 24 | 4, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | 24 | adantr 276 |
. . . . . . . 8
|
| 26 | fveq2 5561 |
. . . . . . . . . 10
| |
| 27 | id 19 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | eqeq12d 2211 |
. . . . . . . . 9
|
| 29 | 28 | ralsng 3663 |
. . . . . . . 8
|
| 30 | 25, 29 | syl 14 |
. . . . . . 7
|
| 31 | 22, 30 | mpbird 167 |
. . . . . 6
|
| 32 | ralun 3346 |
. . . . . 6
| |
| 33 | 15, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | elfzuz 10113 |
. . . . . . . 8
| |
| 35 | fzisfzounsn 10329 |
. . . . . . . 8
| |
| 36 | 4, 34, 35 | 3syl 17 |
. . . . . . 7
|
| 37 | 36 | raleqdv 2699 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | 33, 38 | mpbird 167 |
. . . 4
|
| 40 | seq3f1olemstep.jp |
. . . . 5
| |
| 41 | 40 | adantr 276 |
. . . 4
|
| 42 | 13, 39, 41 | 3jca 1179 |
. . 3
|
| 43 | nfcv 2339 |
. . . 4
| |
| 44 | nfv 1542 |
. . . . 5
| |
| 45 | nfv 1542 |
. . . . 5
| |
| 46 | nfcv 2339 |
. . . . . . . 8
| |
| 47 | nfcv 2339 |
. . . . . . . 8
| |
| 48 | nfcsb1v 3117 |
. . . . . . . 8
| |
| 49 | 46, 47, 48 | nfseq 10566 |
. . . . . . 7
|
| 50 | nfcv 2339 |
. . . . . . 7
| |
| 51 | 49, 50 | nffv 5571 |
. . . . . 6
|
| 52 | 51 | nfeq1 2349 |
. . . . 5
|
| 53 | 44, 45, 52 | nf3an 1580 |
. . . 4
|
| 54 | f1oeq1 5495 |
. . . . 5
| |
| 55 | fveq1 5560 |
. . . . . . 7
| |
| 56 | 55 | eqeq1d 2205 |
. . . . . 6
|
| 57 | 56 | ralbidv 2497 |
. . . . 5
|
| 58 | csbeq1a 3093 |
. . . . . . . 8
| |
| 59 | 58 | seqeq3d 10564 |
. . . . . . 7
|
| 60 | 59 | fveq1d 5563 |
. . . . . 6
|
| 61 | 60 | eqeq1d 2205 |
. . . . 5
|
| 62 | 54, 57, 61 | 3anbi123d 1323 |
. . . 4
|
| 63 | 43, 53, 62 | spcegf 2847 |
. . 3
|
| 64 | 12, 42, 63 | sylc 62 |
. 2
|
| 65 | 4 | adantr 276 |
. . . 4
|
| 66 | 1 | adantr 276 |
. . . 4
|
| 67 | eqid 2196 |
. . . 4
| |
| 68 | 65, 66, 67 | iseqf1olemqf1o 10615 |
. . 3
|
| 69 | 14 | adantr 276 |
. . . 4
|
| 70 | 65, 66, 67, 69 | iseqf1olemqk 10616 |
. . 3
|
| 71 | iseqf1o.1 |
. . . . . 6
| |
| 72 | 71 | adantlr 477 |
. . . . 5
|
| 73 | iseqf1o.2 |
. . . . . 6
| |
| 74 | 73 | adantlr 477 |
. . . . 5
|
| 75 | iseqf1o.3 |
. . . . . 6
| |
| 76 | 75 | adantlr 477 |
. . . . 5
|
| 77 | iseqf1o.4 |
. . . . . 6
| |
| 78 | 77 | adantr 276 |
. . . . 5
|
| 79 | iseqf1o.6 |
. . . . . 6
| |
| 80 | 79 | adantr 276 |
. . . . 5
|
| 81 | iseqf1o.7 |
. . . . . 6
| |
| 82 | 81 | adantlr 477 |
. . . . 5
|
| 83 | neqne 2375 |
. . . . . 6
| |
| 84 | 83 | adantl 277 |
. . . . 5
|
| 85 | seq3f1olemstep.p |
. . . . 5
| |
| 86 | 72, 74, 76, 78, 80, 82, 65, 66, 69, 84, 67, 85 | seq3f1olemqsum 10622 |
. . . 4
|
| 87 | 40 | adantr 276 |
. . . 4
|
| 88 | 86, 87 | eqtr3d 2231 |
. . 3
|
| 89 | 65, 5 | syl 14 |
. . . . 5
|
| 90 | 65, 7 | syl 14 |
. . . . 5
|
| 91 | 89, 90 | fzfigd 10540 |
. . . 4
|
| 92 | mptexg 5790 |
. . . 4
| |
| 93 | nfcv 2339 |
. . . . 5
| |
| 94 | nfv 1542 |
. . . . . 6
| |
| 95 | nfv 1542 |
. . . . . 6
| |
| 96 | nfcsb1v 3117 |
. . . . . . . . 9
| |
| 97 | 46, 47, 96 | nfseq 10566 |
. . . . . . . 8
|
| 98 | 97, 50 | nffv 5571 |
. . . . . . 7
|
| 99 | 98 | nfeq1 2349 |
. . . . . 6
|
| 100 | 94, 95, 99 | nf3an 1580 |
. . . . 5
|
| 101 | f1oeq1 5495 |
. . . . . 6
| |
| 102 | fveq1 5560 |
. . . . . . . 8
| |
| 103 | 102 | eqeq1d 2205 |
. . . . . . 7
|
| 104 | 103 | ralbidv 2497 |
. . . . . 6
|
| 105 | csbeq1a 3093 |
. . . . . . . . 9
| |
| 106 | 105 | seqeq3d 10564 |
. . . . . . . 8
|
| 107 | 106 | fveq1d 5563 |
. . . . . . 7
|
| 108 | 107 | eqeq1d 2205 |
. . . . . 6
|
| 109 | 101, 104, 108 | 3anbi123d 1323 |
. . . . 5
|
| 110 | 93, 100, 109 | spcegf 2847 |
. . . 4
|
| 111 | 91, 92, 110 | 3syl 17 |
. . 3
|
| 112 | 68, 70, 88, 111 | mp3and 1351 |
. 2
|
| 113 | f1ocnv 5520 |
. . . . . . 7
| |
| 114 | f1of 5507 |
. . . . . . 7
| |
| 115 | 1, 113, 114 | 3syl 17 |
. . . . . 6
|
| 116 | 115, 4 | ffvelcdmd 5701 |
. . . . 5
|
| 117 | elfzelz 10117 |
. . . . 5
| |
| 118 | 116, 117 | syl 14 |
. . . 4
|
| 119 | zdceq 9418 |
. . . 4
| |
| 120 | 24, 118, 119 | syl2anc 411 |
. . 3
|
| 121 | exmiddc 837 |
. . 3
| |
| 122 | 120, 121 | syl 14 |
. 2
|
| 123 | 64, 112, 122 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 df-seqfrec 10557 |
| This theorem is referenced by: seq3f1olemp 10624 |
| Copyright terms: Public domain | W3C validator |