ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup Unicode version

Theorem bezoutlemsup 12201
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemgcd.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlemsup  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Distinct variable groups:    z, D    z, A    z, B    ph, z

Proof of Theorem bezoutlemsup
Dummy variables  w  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4  |-  ( ph  ->  D  e.  NN0 )
21nn0red 9320 . . 3  |-  ( ph  ->  D  e.  RR )
3 elrabi 2917 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  w  e.  ZZ )
43adantl 277 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  ZZ )
54zred 9465 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  RR )
62adantr 276 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  D  e.  RR )
7 breq1 4037 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
8 breq1 4037 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
97, 8anbi12d 473 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
109elrab 2920 . . . . . . . 8  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( w  e.  ZZ  /\  ( w 
||  A  /\  w  ||  B ) ) )
1110simprbi 275 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  ( w  ||  A  /\  w  ||  B ) )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
w  ||  A  /\  w  ||  B ) )
13 breq1 4037 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  <_  D  <->  w  <_  D ) )
149, 13imbi12d 234 . . . . . . . 8  |-  ( z  =  w  ->  (
( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D )  <->  ( ( w 
||  A  /\  w  ||  B )  ->  w  <_  D ) ) )
15 bezoutlemgcd.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ZZ )
16 bezoutlemgcd.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ZZ )
17 bezoutlemgcd.4 . . . . . . . . . 10  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
18 bezoutlemgcd.5 . . . . . . . . . 10  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
1915, 16, 1, 17, 18bezoutlemle 12200 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
2019adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  A. z  e.  ZZ  ( ( z 
||  A  /\  z  ||  B )  ->  z  <_  D ) )
21 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  w  e.  ZZ )
2214, 20, 21rspcdva 2873 . . . . . . 7  |-  ( (
ph  /\  w  e.  ZZ )  ->  ( ( w  ||  A  /\  w  ||  B )  ->  w  <_  D ) )
233, 22sylan2 286 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
( w  ||  A  /\  w  ||  B )  ->  w  <_  D
) )
2412, 23mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  <_  D )
255, 6, 24lensymd 8165 . . . 4  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  -.  D  <  w )
2625ralrimiva 2570 . . 3  |-  ( ph  ->  A. w  e.  {
z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) }  -.  D  < 
w )
271nn0zd 9463 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
28 iddvds 11986 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  D  ||  D )
2927, 28syl 14 . . . . . . . . 9  |-  ( ph  ->  D  ||  D )
30 breq1 4037 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
z  ||  D  <->  D  ||  D
) )
31 breq1 4037 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  A  <->  D  ||  A
) )
32 breq1 4037 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  B  <->  D  ||  B
) )
3331, 32anbi12d 473 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( D  ||  A  /\  D  ||  B ) ) )
3430, 33bibi12d 235 . . . . . . . . . 10  |-  ( z  =  D  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) ) )
3534, 17, 27rspcdva 2873 . . . . . . . . 9  |-  ( ph  ->  ( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) )
3629, 35mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( D  ||  A  /\  D  ||  B ) )
3736ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  ||  A  /\  D  ||  B ) )
381ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  NN0 )
3938nn0zd 9463 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  ZZ )
4033elrab3 2921 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4237, 41mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } )
43 breq2 4038 . . . . . . 7  |-  ( u  =  D  ->  (
w  <  u  <->  w  <  D ) )
4443rspcev 2868 . . . . . 6  |-  ( ( D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) }  /\  w  <  D
)  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4542, 44sylancom 420 . . . . 5  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4645ex 115 . . . 4  |-  ( (
ph  /\  w  e.  RR )  ->  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )
4746ralrimiva 2570 . . 3  |-  ( ph  ->  A. w  e.  RR  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } w  <  u ) )
48 lttri3 8123 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4948adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
5049eqsupti 7071 . . 3  |-  ( ph  ->  ( ( D  e.  RR  /\  A. w  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) }  -.  D  <  w  /\  A. w  e.  RR  ( w  < 
D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )  ->  sup ( { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D ) )
512, 26, 47, 50mp3and 1351 . 2  |-  ( ph  ->  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D )
5251eqcomd 2202 1  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   class class class wbr 4034   supcsup 7057   RRcr 7895   0cc0 7896    < clt 8078    <_ cle 8079   NN0cn0 9266   ZZcz 9343    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-dvds 11970
This theorem is referenced by:  dfgcd3  12202
  Copyright terms: Public domain W3C validator