ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup Unicode version

Theorem bezoutlemsup 11993
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemgcd.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlemsup  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Distinct variable groups:    z, D    z, A    z, B    ph, z

Proof of Theorem bezoutlemsup
Dummy variables  w  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4  |-  ( ph  ->  D  e.  NN0 )
21nn0red 9219 . . 3  |-  ( ph  ->  D  e.  RR )
3 elrabi 2890 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  w  e.  ZZ )
43adantl 277 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  ZZ )
54zred 9364 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  RR )
62adantr 276 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  D  e.  RR )
7 breq1 4003 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
8 breq1 4003 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
97, 8anbi12d 473 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
109elrab 2893 . . . . . . . 8  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( w  e.  ZZ  /\  ( w 
||  A  /\  w  ||  B ) ) )
1110simprbi 275 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  ( w  ||  A  /\  w  ||  B ) )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
w  ||  A  /\  w  ||  B ) )
13 breq1 4003 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  <_  D  <->  w  <_  D ) )
149, 13imbi12d 234 . . . . . . . 8  |-  ( z  =  w  ->  (
( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D )  <->  ( ( w 
||  A  /\  w  ||  B )  ->  w  <_  D ) ) )
15 bezoutlemgcd.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ZZ )
16 bezoutlemgcd.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ZZ )
17 bezoutlemgcd.4 . . . . . . . . . 10  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
18 bezoutlemgcd.5 . . . . . . . . . 10  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
1915, 16, 1, 17, 18bezoutlemle 11992 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
2019adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  A. z  e.  ZZ  ( ( z 
||  A  /\  z  ||  B )  ->  z  <_  D ) )
21 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  w  e.  ZZ )
2214, 20, 21rspcdva 2846 . . . . . . 7  |-  ( (
ph  /\  w  e.  ZZ )  ->  ( ( w  ||  A  /\  w  ||  B )  ->  w  <_  D ) )
233, 22sylan2 286 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
( w  ||  A  /\  w  ||  B )  ->  w  <_  D
) )
2412, 23mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  <_  D )
255, 6, 24lensymd 8069 . . . 4  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  -.  D  <  w )
2625ralrimiva 2550 . . 3  |-  ( ph  ->  A. w  e.  {
z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) }  -.  D  < 
w )
271nn0zd 9362 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
28 iddvds 11795 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  D  ||  D )
2927, 28syl 14 . . . . . . . . 9  |-  ( ph  ->  D  ||  D )
30 breq1 4003 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
z  ||  D  <->  D  ||  D
) )
31 breq1 4003 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  A  <->  D  ||  A
) )
32 breq1 4003 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  B  <->  D  ||  B
) )
3331, 32anbi12d 473 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( D  ||  A  /\  D  ||  B ) ) )
3430, 33bibi12d 235 . . . . . . . . . 10  |-  ( z  =  D  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) ) )
3534, 17, 27rspcdva 2846 . . . . . . . . 9  |-  ( ph  ->  ( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) )
3629, 35mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( D  ||  A  /\  D  ||  B ) )
3736ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  ||  A  /\  D  ||  B ) )
381ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  NN0 )
3938nn0zd 9362 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  ZZ )
4033elrab3 2894 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4237, 41mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } )
43 breq2 4004 . . . . . . 7  |-  ( u  =  D  ->  (
w  <  u  <->  w  <  D ) )
4443rspcev 2841 . . . . . 6  |-  ( ( D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) }  /\  w  <  D
)  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4542, 44sylancom 420 . . . . 5  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4645ex 115 . . . 4  |-  ( (
ph  /\  w  e.  RR )  ->  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )
4746ralrimiva 2550 . . 3  |-  ( ph  ->  A. w  e.  RR  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } w  <  u ) )
48 lttri3 8027 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4948adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
5049eqsupti 6989 . . 3  |-  ( ph  ->  ( ( D  e.  RR  /\  A. w  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) }  -.  D  <  w  /\  A. w  e.  RR  ( w  < 
D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )  ->  sup ( { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D ) )
512, 26, 47, 50mp3and 1340 . 2  |-  ( ph  ->  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D )
5251eqcomd 2183 1  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   class class class wbr 4000   supcsup 6975   RRcr 7801   0cc0 7802    < clt 7982    <_ cle 7983   NN0cn0 9165   ZZcz 9242    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-dvds 11779
This theorem is referenced by:  dfgcd3  11994
  Copyright terms: Public domain W3C validator