| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlemsup | Unicode version | ||
| Description: Lemma for Bézout's
identity. The number satisfying the
greatest common divisor condition is the supremum of divisors of
both |
| Ref | Expression |
|---|---|
| bezoutlemgcd.1 |
|
| bezoutlemgcd.2 |
|
| bezoutlemgcd.3 |
|
| bezoutlemgcd.4 |
|
| bezoutlemgcd.5 |
|
| Ref | Expression |
|---|---|
| bezoutlemsup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezoutlemgcd.3 |
. . . 4
| |
| 2 | 1 | nn0red 9303 |
. . 3
|
| 3 | elrabi 2917 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | 4 | zred 9448 |
. . . . 5
|
| 6 | 2 | adantr 276 |
. . . . 5
|
| 7 | breq1 4036 |
. . . . . . . . . 10
| |
| 8 | breq1 4036 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | anbi12d 473 |
. . . . . . . . 9
|
| 10 | 9 | elrab 2920 |
. . . . . . . 8
|
| 11 | 10 | simprbi 275 |
. . . . . . 7
|
| 12 | 11 | adantl 277 |
. . . . . 6
|
| 13 | breq1 4036 |
. . . . . . . . 9
| |
| 14 | 9, 13 | imbi12d 234 |
. . . . . . . 8
|
| 15 | bezoutlemgcd.1 |
. . . . . . . . . 10
| |
| 16 | bezoutlemgcd.2 |
. . . . . . . . . 10
| |
| 17 | bezoutlemgcd.4 |
. . . . . . . . . 10
| |
| 18 | bezoutlemgcd.5 |
. . . . . . . . . 10
| |
| 19 | 15, 16, 1, 17, 18 | bezoutlemle 12175 |
. . . . . . . . 9
|
| 20 | 19 | adantr 276 |
. . . . . . . 8
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | 14, 20, 21 | rspcdva 2873 |
. . . . . . 7
|
| 23 | 3, 22 | sylan2 286 |
. . . . . 6
|
| 24 | 12, 23 | mpd 13 |
. . . . 5
|
| 25 | 5, 6, 24 | lensymd 8148 |
. . . 4
|
| 26 | 25 | ralrimiva 2570 |
. . 3
|
| 27 | 1 | nn0zd 9446 |
. . . . . . . . . 10
|
| 28 | iddvds 11969 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | breq1 4036 |
. . . . . . . . . . 11
| |
| 31 | breq1 4036 |
. . . . . . . . . . . 12
| |
| 32 | breq1 4036 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | anbi12d 473 |
. . . . . . . . . . 11
|
| 34 | 30, 33 | bibi12d 235 |
. . . . . . . . . 10
|
| 35 | 34, 17, 27 | rspcdva 2873 |
. . . . . . . . 9
|
| 36 | 29, 35 | mpbid 147 |
. . . . . . . 8
|
| 37 | 36 | ad2antrr 488 |
. . . . . . 7
|
| 38 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 39 | 38 | nn0zd 9446 |
. . . . . . . 8
|
| 40 | 33 | elrab3 2921 |
. . . . . . . 8
|
| 41 | 39, 40 | syl 14 |
. . . . . . 7
|
| 42 | 37, 41 | mpbird 167 |
. . . . . 6
|
| 43 | breq2 4037 |
. . . . . . 7
| |
| 44 | 43 | rspcev 2868 |
. . . . . 6
|
| 45 | 42, 44 | sylancom 420 |
. . . . 5
|
| 46 | 45 | ex 115 |
. . . 4
|
| 47 | 46 | ralrimiva 2570 |
. . 3
|
| 48 | lttri3 8106 |
. . . . 5
| |
| 49 | 48 | adantl 277 |
. . . 4
|
| 50 | 49 | eqsupti 7062 |
. . 3
|
| 51 | 2, 26, 47, 50 | mp3and 1351 |
. 2
|
| 52 | 51 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-q 9694 df-dvds 11953 |
| This theorem is referenced by: dfgcd3 12177 |
| Copyright terms: Public domain | W3C validator |