ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup Unicode version

Theorem bezoutlemsup 12445
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemgcd.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlemsup  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Distinct variable groups:    z, D    z, A    z, B    ph, z

Proof of Theorem bezoutlemsup
Dummy variables  w  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4  |-  ( ph  ->  D  e.  NN0 )
21nn0red 9384 . . 3  |-  ( ph  ->  D  e.  RR )
3 elrabi 2933 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  w  e.  ZZ )
43adantl 277 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  ZZ )
54zred 9530 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  RR )
62adantr 276 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  D  e.  RR )
7 breq1 4062 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
8 breq1 4062 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
97, 8anbi12d 473 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
109elrab 2936 . . . . . . . 8  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( w  e.  ZZ  /\  ( w 
||  A  /\  w  ||  B ) ) )
1110simprbi 275 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  ( w  ||  A  /\  w  ||  B ) )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
w  ||  A  /\  w  ||  B ) )
13 breq1 4062 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  <_  D  <->  w  <_  D ) )
149, 13imbi12d 234 . . . . . . . 8  |-  ( z  =  w  ->  (
( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D )  <->  ( ( w 
||  A  /\  w  ||  B )  ->  w  <_  D ) ) )
15 bezoutlemgcd.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ZZ )
16 bezoutlemgcd.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ZZ )
17 bezoutlemgcd.4 . . . . . . . . . 10  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
18 bezoutlemgcd.5 . . . . . . . . . 10  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
1915, 16, 1, 17, 18bezoutlemle 12444 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
2019adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  A. z  e.  ZZ  ( ( z 
||  A  /\  z  ||  B )  ->  z  <_  D ) )
21 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  w  e.  ZZ )
2214, 20, 21rspcdva 2889 . . . . . . 7  |-  ( (
ph  /\  w  e.  ZZ )  ->  ( ( w  ||  A  /\  w  ||  B )  ->  w  <_  D ) )
233, 22sylan2 286 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
( w  ||  A  /\  w  ||  B )  ->  w  <_  D
) )
2412, 23mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  <_  D )
255, 6, 24lensymd 8229 . . . 4  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  -.  D  <  w )
2625ralrimiva 2581 . . 3  |-  ( ph  ->  A. w  e.  {
z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) }  -.  D  < 
w )
271nn0zd 9528 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
28 iddvds 12230 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  D  ||  D )
2927, 28syl 14 . . . . . . . . 9  |-  ( ph  ->  D  ||  D )
30 breq1 4062 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
z  ||  D  <->  D  ||  D
) )
31 breq1 4062 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  A  <->  D  ||  A
) )
32 breq1 4062 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  B  <->  D  ||  B
) )
3331, 32anbi12d 473 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( D  ||  A  /\  D  ||  B ) ) )
3430, 33bibi12d 235 . . . . . . . . . 10  |-  ( z  =  D  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) ) )
3534, 17, 27rspcdva 2889 . . . . . . . . 9  |-  ( ph  ->  ( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) )
3629, 35mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( D  ||  A  /\  D  ||  B ) )
3736ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  ||  A  /\  D  ||  B ) )
381ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  NN0 )
3938nn0zd 9528 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  ZZ )
4033elrab3 2937 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4237, 41mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } )
43 breq2 4063 . . . . . . 7  |-  ( u  =  D  ->  (
w  <  u  <->  w  <  D ) )
4443rspcev 2884 . . . . . 6  |-  ( ( D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) }  /\  w  <  D
)  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4542, 44sylancom 420 . . . . 5  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4645ex 115 . . . 4  |-  ( (
ph  /\  w  e.  RR )  ->  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )
4746ralrimiva 2581 . . 3  |-  ( ph  ->  A. w  e.  RR  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } w  <  u ) )
48 lttri3 8187 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4948adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
5049eqsupti 7124 . . 3  |-  ( ph  ->  ( ( D  e.  RR  /\  A. w  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) }  -.  D  <  w  /\  A. w  e.  RR  ( w  < 
D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )  ->  sup ( { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D ) )
512, 26, 47, 50mp3and 1353 . 2  |-  ( ph  ->  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D )
5251eqcomd 2213 1  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490   class class class wbr 4059   supcsup 7110   RRcr 7959   0cc0 7960    < clt 8142    <_ cle 8143   NN0cn0 9330   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-q 9776  df-dvds 12214
This theorem is referenced by:  dfgcd3  12446
  Copyright terms: Public domain W3C validator