| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an12i | Unicode version | ||
| Description: mp3an 1348 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| mp3an12i.1 | 
 | 
| mp3an12i.2 | 
 | 
| mp3an12i.3 | 
 | 
| mp3an12i.4 | 
 | 
| Ref | Expression | 
|---|---|
| mp3an12i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an12i.3 | 
. 2
 | |
| 2 | mp3an12i.1 | 
. . 3
 | |
| 3 | mp3an12i.2 | 
. . 3
 | |
| 4 | mp3an12i.4 | 
. . 3
 | |
| 5 | 2, 3, 4 | mp3an12 1338 | 
. 2
 | 
| 6 | 1, 5 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: map1 6871 exmidpw2en 6973 suplocsrlempr 7874 geo2lim 11681 fprodge0 11802 fprodge1 11804 3dvds 12029 oddp1d2 12055 bezoutlema 12166 bezoutlemb 12167 pythagtriplem1 12434 exmidunben 12643 psrelbas 14228 psraddcl 14232 ismet 14580 isxmet 14581 dvidrelem 14928 coseq0negpitopi 15072 cosq34lt1 15086 cos02pilt1 15087 logdivlti 15117 1sgm2ppw 15231 lgseisenlem1 15311 lgseisen 15315 lgsquad3 15325 m1lgs 15326 | 
| Copyright terms: Public domain | W3C validator |