Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an12i | Unicode version |
Description: mp3an 1327 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an12i.1 | |
mp3an12i.2 | |
mp3an12i.3 | |
mp3an12i.4 |
Ref | Expression |
---|---|
mp3an12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12i.3 | . 2 | |
2 | mp3an12i.1 | . . 3 | |
3 | mp3an12i.2 | . . 3 | |
4 | mp3an12i.4 | . . 3 | |
5 | 2, 3, 4 | mp3an12 1317 | . 2 |
6 | 1, 5 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: map1 6778 suplocsrlempr 7748 geo2lim 11457 fprodge0 11578 fprodge1 11580 oddp1d2 11827 bezoutlema 11932 bezoutlemb 11933 pythagtriplem1 12197 exmidunben 12359 ismet 12984 isxmet 12985 coseq0negpitopi 13397 cosq34lt1 13411 cos02pilt1 13412 logdivlti 13442 |
Copyright terms: Public domain | W3C validator |