ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp3an12i Unicode version

Theorem mp3an12i 1352
Description: mp3an 1348 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an12i.1  |-  ph
mp3an12i.2  |-  ps
mp3an12i.3  |-  ( ch 
->  th )
mp3an12i.4  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Assertion
Ref Expression
mp3an12i  |-  ( ch 
->  ta )

Proof of Theorem mp3an12i
StepHypRef Expression
1 mp3an12i.3 . 2  |-  ( ch 
->  th )
2 mp3an12i.1 . . 3  |-  ph
3 mp3an12i.2 . . 3  |-  ps
4 mp3an12i.4 . . 3  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
52, 3, 4mp3an12 1338 . 2  |-  ( th 
->  ta )
61, 5syl 14 1  |-  ( ch 
->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  map1  6868  exmidpw2en  6970  suplocsrlempr  7869  geo2lim  11662  fprodge0  11783  fprodge1  11785  oddp1d2  12034  bezoutlema  12139  bezoutlemb  12140  pythagtriplem1  12406  exmidunben  12586  psrelbas  14171  psraddcl  14175  ismet  14523  isxmet  14524  dvidrelem  14871  coseq0negpitopi  15012  cosq34lt1  15026  cos02pilt1  15027  logdivlti  15057  lgseisenlem1  15227  lgseisen  15231  lgsquad3  15241  m1lgs  15242
  Copyright terms: Public domain W3C validator