Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an12i | Unicode version |
Description: mp3an 1332 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an12i.1 | |
mp3an12i.2 | |
mp3an12i.3 | |
mp3an12i.4 |
Ref | Expression |
---|---|
mp3an12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12i.3 | . 2 | |
2 | mp3an12i.1 | . . 3 | |
3 | mp3an12i.2 | . . 3 | |
4 | mp3an12i.4 | . . 3 | |
5 | 2, 3, 4 | mp3an12 1322 | . 2 |
6 | 1, 5 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: map1 6790 suplocsrlempr 7769 geo2lim 11479 fprodge0 11600 fprodge1 11602 oddp1d2 11849 bezoutlema 11954 bezoutlemb 11955 pythagtriplem1 12219 exmidunben 12381 ismet 13138 isxmet 13139 coseq0negpitopi 13551 cosq34lt1 13565 cos02pilt1 13566 logdivlti 13596 |
Copyright terms: Public domain | W3C validator |