| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12i | Unicode version | ||
| Description: mp3an 1371 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an12i.1 |
|
| mp3an12i.2 |
|
| mp3an12i.3 |
|
| mp3an12i.4 |
|
| Ref | Expression |
|---|---|
| mp3an12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12i.3 |
. 2
| |
| 2 | mp3an12i.1 |
. . 3
| |
| 3 | mp3an12i.2 |
. . 3
| |
| 4 | mp3an12i.4 |
. . 3
| |
| 5 | 2, 3, 4 | mp3an12 1361 |
. 2
|
| 6 | 1, 5 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: funopsn 5817 map1 6965 exmidpw2en 7074 suplocsrlempr 7994 geo2lim 12027 fprodge0 12148 fprodge1 12150 3dvds 12375 oddp1d2 12401 bezoutlema 12520 bezoutlemb 12521 pythagtriplem1 12788 exmidunben 12997 psrelbas 14639 psraddcl 14644 psr0cl 14645 psr0lid 14646 psrnegcl 14647 psrlinv 14648 psrgrp 14649 psr1clfi 14652 mplsubgfilemcl 14663 ismet 15018 isxmet 15019 dvidrelem 15366 coseq0negpitopi 15510 cosq34lt1 15524 cos02pilt1 15525 logdivlti 15555 1sgm2ppw 15669 lgseisenlem1 15749 lgseisen 15753 lgsquad3 15763 m1lgs 15764 2omapen 16360 pw1mapen 16362 |
| Copyright terms: Public domain | W3C validator |