| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 |
|
| mpd3an23.2 |
|
| mpd3an23.3 |
|
| Ref | Expression |
|---|---|
| mpd3an23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | mpd3an23.1 |
. 2
| |
| 3 | mpd3an23.2 |
. 2
| |
| 4 | mpd3an23.3 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: exp0 10652 bcpasc 10875 bccl 10876 pw2dvds 12359 qnumdencoprm 12386 qeqnumdivden 12387 grpinvid 13262 qus0 13441 ghmid 13455 mgpvalg 13555 mgpex 13557 opprex 13705 unitgrpid 13750 qusmul2 14161 psrbaglesuppg 14302 dvef 15047 2lgs 15429 |
| Copyright terms: Public domain | W3C validator |