| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 |
|
| mpd3an23.2 |
|
| mpd3an23.3 |
|
| Ref | Expression |
|---|---|
| mpd3an23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | mpd3an23.1 |
. 2
| |
| 3 | mpd3an23.2 |
. 2
| |
| 4 | mpd3an23.3 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: exp0 10688 bcpasc 10911 bccl 10912 pw2dvds 12488 qnumdencoprm 12515 qeqnumdivden 12516 grpinvid 13392 qus0 13571 ghmid 13585 mgpvalg 13685 mgpex 13687 opprex 13835 unitgrpid 13880 qusmul2 14291 psrbaglesuppg 14434 dvef 15199 2lgs 15581 |
| Copyright terms: Public domain | W3C validator |