| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpd3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) | 
| Ref | Expression | 
|---|---|
| mpd3an23.1 | 
 | 
| mpd3an23.2 | 
 | 
| mpd3an23.3 | 
 | 
| Ref | Expression | 
|---|---|
| mpd3an23 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | 
. 2
 | |
| 2 | mpd3an23.1 | 
. 2
 | |
| 3 | mpd3an23.2 | 
. 2
 | |
| 4 | mpd3an23.3 | 
. 2
 | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: exp0 10635 bcpasc 10858 bccl 10859 pw2dvds 12334 qnumdencoprm 12361 qeqnumdivden 12362 grpinvid 13192 qus0 13365 ghmid 13379 mgpvalg 13479 mgpex 13481 opprex 13629 unitgrpid 13674 qusmul2 14085 psrbaglesuppg 14226 dvef 14963 2lgs 15345 | 
| Copyright terms: Public domain | W3C validator |