| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 |
|
| mpd3an23.2 |
|
| mpd3an23.3 |
|
| Ref | Expression |
|---|---|
| mpd3an23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | mpd3an23.1 |
. 2
| |
| 3 | mpd3an23.2 |
. 2
| |
| 4 | mpd3an23.3 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: exp0 10760 bcpasc 10983 bccl 10984 pw2dvds 12683 qnumdencoprm 12710 qeqnumdivden 12711 grpinvid 13588 qus0 13767 ghmid 13781 mgpvalg 13881 mgpex 13883 opprex 14031 unitgrpid 14076 qusmul2 14487 psrbaglesuppg 14630 dvef 15395 2lgs 15777 |
| Copyright terms: Public domain | W3C validator |