| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 |
|
| mpd3an23.2 |
|
| mpd3an23.3 |
|
| Ref | Expression |
|---|---|
| mpd3an23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | mpd3an23.1 |
. 2
| |
| 3 | mpd3an23.2 |
. 2
| |
| 4 | mpd3an23.3 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: exp0 10720 bcpasc 10943 bccl 10944 pw2dvds 12573 qnumdencoprm 12600 qeqnumdivden 12601 grpinvid 13477 qus0 13656 ghmid 13670 mgpvalg 13770 mgpex 13772 opprex 13920 unitgrpid 13965 qusmul2 14376 psrbaglesuppg 14519 dvef 15284 2lgs 15666 |
| Copyright terms: Public domain | W3C validator |