ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpd3an23 Unicode version

Theorem mpd3an23 1350
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
Hypotheses
Ref Expression
mpd3an23.1  |-  ( ph  ->  ps )
mpd3an23.2  |-  ( ph  ->  ch )
mpd3an23.3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
mpd3an23  |-  ( ph  ->  th )

Proof of Theorem mpd3an23
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 mpd3an23.1 . 2  |-  ( ph  ->  ps )
3 mpd3an23.2 . 2  |-  ( ph  ->  ch )
4 mpd3an23.3 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
51, 2, 3, 4syl3anc 1249 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  exp0  10614  bcpasc  10837  bccl  10838  pw2dvds  12304  qnumdencoprm  12331  qeqnumdivden  12332  grpinvid  13132  qus0  13305  ghmid  13319  mgpvalg  13419  mgpex  13421  opprex  13569  unitgrpid  13614  qusmul2  14025  psrbaglesuppg  14158  dvef  14873
  Copyright terms: Public domain W3C validator