ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpidan Unicode version

Theorem mpidan 420
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1  |-  ( ph  ->  ch )
mpidan.2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
mpidan  |-  ( (
ph  /\  ps )  ->  th )

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3  |-  ( ph  ->  ch )
21adantr 274 . 2  |-  ( (
ph  /\  ps )  ->  ch )
3 mpidan.2 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
42, 3mpdan 418 1  |-  ( (
ph  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  sumrbdc  11320  prodrbdclem2  11514  tx2cn  12920  dvaddxxbr  13315  dvmulxxbr  13316
  Copyright terms: Public domain W3C validator