| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpidan | Unicode version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 |
|
| mpidan.2 |
|
| Ref | Expression |
|---|---|
| mpidan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | mpidan.2 |
. 2
| |
| 4 | 2, 3 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sumrbdc 11544 prodrbdclem2 11738 subsubrng 13770 subsubrg 13801 tx2cn 14506 dvaddxxbr 14937 dvmulxxbr 14938 |
| Copyright terms: Public domain | W3C validator |