| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | Unicode version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 |
|
| mpancom.2 |
|
| Ref | Expression |
|---|---|
| mpancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | mpancom.2 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3075 onsucelsucr 4545 sucunielr 4547 ordsuc 4600 peano2b 4652 xpiindim 4804 fvelrnb 5611 fliftcnv 5845 riotaprop 5904 unielxp 6241 dmtpos 6323 tpossym 6343 ercnv 6622 cnvct 6877 php5dom 6933 3xpfi 7003 recrecnq 7478 1idpr 7676 eqlei2 8138 lem1 8891 eluzfz1 10123 fzpred 10162 uznfz 10195 fz0fzdiffz0 10222 fzctr 10225 flid 10391 flqeqceilz 10427 faclbnd3 10852 bcn1 10867 isfinite4im 10901 leabs 11256 gcd0id 12171 lcmgcdlem 12270 dvdsnprmd 12318 pcprod 12540 fldivp1 12542 intopsn 13069 mgm1 13072 sgrp1 13113 mnd1 13157 mnd1id 13158 grp1 13308 grp1inv 13309 eqger 13430 eqgid 13432 qusghm 13488 rngressid 13586 ring1 13691 ringressid 13695 subrgsubm 13866 resrhm2b 13881 lssex 13986 cncrng 14201 eltpsg 14360 tg1 14379 cldval 14419 cldss 14425 cldopn 14427 psmetdmdm 14644 dvef 15047 relogef 15184 zabsle1 15324 bj-nn0suc0 15680 |
| Copyright terms: Public domain | W3C validator |