| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | Unicode version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 |
|
| mpancom.2 |
|
| Ref | Expression |
|---|---|
| mpancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | mpancom.2 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3092 onsucelsucr 4574 sucunielr 4576 ordsuc 4629 peano2b 4681 xpiindim 4833 fununfun 5336 fvelrnb 5649 fliftcnv 5887 riotaprop 5946 unielxp 6283 dmtpos 6365 tpossym 6385 ercnv 6664 cnvct 6925 php5dom 6985 3xpfi 7056 recrecnq 7542 1idpr 7740 eqlei2 8202 lem1 8955 eluzfz1 10188 fzpred 10227 uznfz 10260 fz0fzdiffz0 10287 fzctr 10290 flid 10464 flqeqceilz 10500 faclbnd3 10925 bcn1 10940 isfinite4im 10974 leabs 11500 gcd0id 12415 lcmgcdlem 12514 dvdsnprmd 12562 pcprod 12784 fldivp1 12786 intopsn 13314 mgm1 13317 sgrp1 13358 mnd1 13402 mnd1id 13403 grp1 13553 grp1inv 13554 eqger 13675 eqgid 13677 qusghm 13733 rngressid 13831 ring1 13936 ringressid 13940 subrgsubm 14111 resrhm2b 14126 lssex 14231 cncrng 14446 eltpsg 14627 tg1 14646 cldval 14686 cldss 14692 cldopn 14694 psmetdmdm 14911 dvef 15314 relogef 15451 zabsle1 15591 bj-nn0suc0 16085 |
| Copyright terms: Public domain | W3C validator |