| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | Unicode version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 |
|
| mpancom.2 |
|
| Ref | Expression |
|---|---|
| mpancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | mpancom.2 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3084 onsucelsucr 4556 sucunielr 4558 ordsuc 4611 peano2b 4663 xpiindim 4815 fununfun 5317 fvelrnb 5626 fliftcnv 5864 riotaprop 5923 unielxp 6260 dmtpos 6342 tpossym 6362 ercnv 6641 cnvct 6901 php5dom 6960 3xpfi 7030 recrecnq 7507 1idpr 7705 eqlei2 8167 lem1 8920 eluzfz1 10153 fzpred 10192 uznfz 10225 fz0fzdiffz0 10252 fzctr 10255 flid 10427 flqeqceilz 10463 faclbnd3 10888 bcn1 10903 isfinite4im 10937 leabs 11385 gcd0id 12300 lcmgcdlem 12399 dvdsnprmd 12447 pcprod 12669 fldivp1 12671 intopsn 13199 mgm1 13202 sgrp1 13243 mnd1 13287 mnd1id 13288 grp1 13438 grp1inv 13439 eqger 13560 eqgid 13562 qusghm 13618 rngressid 13716 ring1 13821 ringressid 13825 subrgsubm 13996 resrhm2b 14011 lssex 14116 cncrng 14331 eltpsg 14512 tg1 14531 cldval 14571 cldss 14577 cldopn 14579 psmetdmdm 14796 dvef 15199 relogef 15336 zabsle1 15476 bj-nn0suc0 15886 |
| Copyright terms: Public domain | W3C validator |