Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpancom | Unicode version |
Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpancom.1 | |
mpancom.2 |
Ref | Expression |
---|---|
mpancom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpancom.1 | . 2 | |
2 | id 19 | . 2 | |
3 | mpancom.2 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mpan 422 spesbc 3040 onsucelsucr 4490 sucunielr 4492 ordsuc 4545 peano2b 4597 xpiindim 4746 fvelrnb 5542 fliftcnv 5771 riotaprop 5829 unielxp 6150 dmtpos 6232 tpossym 6252 ercnv 6530 cnvct 6783 php5dom 6837 3xpfi 6904 recrecnq 7343 1idpr 7541 eqlei2 8001 lem1 8750 eluzfz1 9974 fzpred 10013 uznfz 10046 fz0fzdiffz0 10073 fzctr 10076 flid 10227 flqeqceilz 10261 faclbnd3 10664 bcn1 10679 isfinite4im 10714 leabs 11025 gcd0id 11921 lcmgcdlem 12018 dvdsnprmd 12066 pcprod 12285 fldivp1 12287 intopsn 12607 mgm1 12610 sgrp1 12637 mnd1 12665 mnd1id 12666 eltpsg 12753 tg1 12774 cldval 12814 cldss 12820 cldopn 12822 psmetdmdm 13039 dvef 13403 relogef 13500 zabsle1 13615 bj-nn0suc0 13907 |
Copyright terms: Public domain | W3C validator |