| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | Unicode version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 |
|
| mpancom.2 |
|
| Ref | Expression |
|---|---|
| mpancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | mpancom.2 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3115 onsucelsucr 4600 sucunielr 4602 ordsuc 4655 peano2b 4707 xpiindim 4859 fununfun 5364 fvelrnb 5681 fliftcnv 5919 riotaprop 5980 unielxp 6320 dmtpos 6402 tpossym 6422 ercnv 6701 cnvct 6962 php5dom 7024 3xpfi 7095 recrecnq 7581 1idpr 7779 eqlei2 8241 lem1 8994 eluzfz1 10227 fzpred 10266 uznfz 10299 fz0fzdiffz0 10326 fzctr 10329 flid 10504 flqeqceilz 10540 faclbnd3 10965 bcn1 10980 isfinite4im 11014 leabs 11585 gcd0id 12500 lcmgcdlem 12599 dvdsnprmd 12647 pcprod 12869 fldivp1 12871 intopsn 13400 mgm1 13403 sgrp1 13444 mnd1 13488 mnd1id 13489 grp1 13639 grp1inv 13640 eqger 13761 eqgid 13763 qusghm 13819 rngressid 13917 ring1 14022 ringressid 14026 subrgsubm 14198 resrhm2b 14213 lssex 14318 cncrng 14533 eltpsg 14714 tg1 14733 cldval 14773 cldss 14779 cldopn 14781 psmetdmdm 14998 dvef 15401 relogef 15538 zabsle1 15678 usgredg2vlem2 16021 wlkprop 16039 wlkvtxiedg 16056 bj-nn0suc0 16313 |
| Copyright terms: Public domain | W3C validator |