| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | Unicode version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 |
|
| mpancom.2 |
|
| Ref | Expression |
|---|---|
| mpancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | mpancom.2 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3084 onsucelsucr 4557 sucunielr 4559 ordsuc 4612 peano2b 4664 xpiindim 4816 fununfun 5318 fvelrnb 5628 fliftcnv 5866 riotaprop 5925 unielxp 6262 dmtpos 6344 tpossym 6364 ercnv 6643 cnvct 6903 php5dom 6962 3xpfi 7032 recrecnq 7509 1idpr 7707 eqlei2 8169 lem1 8922 eluzfz1 10155 fzpred 10194 uznfz 10227 fz0fzdiffz0 10254 fzctr 10257 flid 10429 flqeqceilz 10465 faclbnd3 10890 bcn1 10905 isfinite4im 10939 leabs 11418 gcd0id 12333 lcmgcdlem 12432 dvdsnprmd 12480 pcprod 12702 fldivp1 12704 intopsn 13232 mgm1 13235 sgrp1 13276 mnd1 13320 mnd1id 13321 grp1 13471 grp1inv 13472 eqger 13593 eqgid 13595 qusghm 13651 rngressid 13749 ring1 13854 ringressid 13858 subrgsubm 14029 resrhm2b 14044 lssex 14149 cncrng 14364 eltpsg 14545 tg1 14564 cldval 14604 cldss 14610 cldopn 14612 psmetdmdm 14829 dvef 15232 relogef 15369 zabsle1 15509 bj-nn0suc0 15923 |
| Copyright terms: Public domain | W3C validator |