Proof of Theorem subsubrng
Step | Hyp | Ref
| Expression |
1 | | subrngrcl 13547 |
. . . . 5
 SubRng 
Rng |
2 | 1 | adantr 276 |
. . . 4
  SubRng  SubRng  
Rng |
3 | | eqid 2189 |
. . . . . . . . 9
         |
4 | 3 | subrngss 13544 |
. . . . . . . 8
 SubRng 
      |
5 | 4 | adantl 277 |
. . . . . . 7
  SubRng  SubRng  
      |
6 | | subsubrng.s |
. . . . . . . . 9

↾s   |
7 | 6 | subrngbas 13550 |
. . . . . . . 8
 SubRng 
      |
8 | 7 | adantr 276 |
. . . . . . 7
  SubRng  SubRng  
      |
9 | 5, 8 | sseqtrrd 3209 |
. . . . . 6
  SubRng  SubRng  
  |
10 | 6 | oveq1i 5905 |
. . . . . . 7
 ↾s    ↾s 
↾s   |
11 | | ressabsg 12585 |
. . . . . . . . 9
  SubRng  Rng
  ↾s 
↾s   ↾s    |
12 | 11 | 3expa 1205 |
. . . . . . . 8
   SubRng   Rng
  ↾s 
↾s   ↾s    |
13 | 1, 12 | mpidan 423 |
. . . . . . 7
  SubRng    
↾s 
↾s   ↾s    |
14 | 10, 13 | eqtrid 2234 |
. . . . . 6
  SubRng    ↾s   ↾s    |
15 | 9, 14 | syldan 282 |
. . . . 5
  SubRng  SubRng  
 ↾s   ↾s    |
16 | | eqid 2189 |
. . . . . . 7
 ↾s   ↾s   |
17 | 16 | subrngrng 13546 |
. . . . . 6
 SubRng 
 ↾s 
Rng |
18 | 17 | adantl 277 |
. . . . 5
  SubRng  SubRng  
 ↾s 
Rng |
19 | 15, 18 | eqeltrrd 2267 |
. . . 4
  SubRng  SubRng  
 ↾s 
Rng |
20 | | eqid 2189 |
. . . . . . 7
         |
21 | 20 | subrngss 13544 |
. . . . . 6
 SubRng 
      |
22 | 21 | adantr 276 |
. . . . 5
  SubRng  SubRng  
      |
23 | 9, 22 | sstrd 3180 |
. . . 4
  SubRng  SubRng  
      |
24 | 20 | issubrng 13543 |
. . . 4
 SubRng   Rng 
↾s  Rng        |
25 | 2, 19, 23, 24 | syl3anbrc 1183 |
. . 3
  SubRng  SubRng  
SubRng    |
26 | 25, 9 | jca 306 |
. 2
  SubRng  SubRng  
 SubRng 
   |
27 | 6 | subrngrng 13546 |
. . . 4
 SubRng 
Rng |
28 | 27 | adantr 276 |
. . 3
  SubRng  
SubRng 
  Rng |
29 | 14 | adantrl 478 |
. . . 4
  SubRng  
SubRng 
   ↾s   ↾s    |
30 | | eqid 2189 |
. . . . . 6
 ↾s   ↾s   |
31 | 30 | subrngrng 13546 |
. . . . 5
 SubRng 
 ↾s 
Rng |
32 | 31 | ad2antrl 490 |
. . . 4
  SubRng  
SubRng 
   ↾s  Rng |
33 | 29, 32 | eqeltrd 2266 |
. . 3
  SubRng  
SubRng 
   ↾s  Rng |
34 | | simprr 531 |
. . . 4
  SubRng  
SubRng 
    |
35 | 7 | adantr 276 |
. . . 4
  SubRng  
SubRng 
        |
36 | 34, 35 | sseqtrd 3208 |
. . 3
  SubRng  
SubRng 
        |
37 | 3 | issubrng 13543 |
. . 3
 SubRng   Rng 
↾s  Rng        |
38 | 28, 33, 36, 37 | syl3anbrc 1183 |
. 2
  SubRng  
SubRng 
  SubRng    |
39 | 26, 38 | impbida 596 |
1
 SubRng 
 SubRng   SubRng      |