ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrng Unicode version

Theorem subsubrng 13713
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subsubrng  |-  ( A  e.  (SubRng `  R
)  ->  ( B  e.  (SubRng `  S )  <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )

Proof of Theorem subsubrng
StepHypRef Expression
1 subrngrcl 13702 . . . . 5  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
21adantr 276 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  R  e. Rng )
3 eqid 2193 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
43subrngss 13699 . . . . . . . 8  |-  ( B  e.  (SubRng `  S
)  ->  B  C_  ( Base `  S ) )
54adantl 277 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  ( Base `  S ) )
6 subsubrng.s . . . . . . . . 9  |-  S  =  ( Rs  A )
76subrngbas 13705 . . . . . . . 8  |-  ( A  e.  (SubRng `  R
)  ->  A  =  ( Base `  S )
)
87adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  A  =  ( Base `  S )
)
95, 8sseqtrrd 3219 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  A
)
106oveq1i 5929 . . . . . . 7  |-  ( Ss  B )  =  ( ( Rs  A )s  B )
11 ressabsg 12697 . . . . . . . . 9  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A  /\  R  e. Rng )  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
12113expa 1205 . . . . . . . 8  |-  ( ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  /\  R  e. Rng )  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
131, 12mpidan 423 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  ->  (
( Rs  A )s  B )  =  ( Rs  B ) )
1410, 13eqtrid 2238 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  ->  ( Ss  B )  =  ( Rs  B ) )
159, 14syldan 282 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Ss  B
)  =  ( Rs  B ) )
16 eqid 2193 . . . . . . 7  |-  ( Ss  B )  =  ( Ss  B )
1716subrngrng 13701 . . . . . 6  |-  ( B  e.  (SubRng `  S
)  ->  ( Ss  B
)  e. Rng )
1817adantl 277 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Ss  B
)  e. Rng )
1915, 18eqeltrrd 2271 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Rs  B
)  e. Rng )
20 eqid 2193 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
2120subrngss 13699 . . . . . 6  |-  ( A  e.  (SubRng `  R
)  ->  A  C_  ( Base `  R ) )
2221adantr 276 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  A  C_  ( Base `  R ) )
239, 22sstrd 3190 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  ( Base `  R ) )
2420issubrng 13698 . . . 4  |-  ( B  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  B )  e. Rng  /\  B  C_  ( Base `  R
) ) )
252, 19, 23, 24syl3anbrc 1183 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  e.  (SubRng `  R ) )
2625, 9jca 306 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) )
276subrngrng 13701 . . . 4  |-  ( A  e.  (SubRng `  R
)  ->  S  e. Rng )
2827adantr 276 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  S  e. Rng )
2914adantrl 478 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Ss  B )  =  ( Rs  B ) )
30 eqid 2193 . . . . . 6  |-  ( Rs  B )  =  ( Rs  B )
3130subrngrng 13701 . . . . 5  |-  ( B  e.  (SubRng `  R
)  ->  ( Rs  B
)  e. Rng )
3231ad2antrl 490 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Rs  B )  e. Rng )
3329, 32eqeltrd 2270 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Ss  B )  e. Rng )
34 simprr 531 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  C_  A )
357adantr 276 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  A  =  ( Base `  S
) )
3634, 35sseqtrd 3218 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  C_  ( Base `  S
) )
373issubrng 13698 . . 3  |-  ( B  e.  (SubRng `  S
)  <->  ( S  e. Rng  /\  ( Ss  B )  e. Rng  /\  B  C_  ( Base `  S
) ) )
3828, 33, 36, 37syl3anbrc 1183 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  e.  (SubRng `  S )
)
3926, 38impbida 596 1  |-  ( A  e.  (SubRng `  R
)  ->  ( B  e.  (SubRng `  S )  <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622  Rngcrng 13431  SubRngcsubrng 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-subg 13243  df-abl 13360  df-rng 13432  df-subrng 13697
This theorem is referenced by:  subsubrng2  13714
  Copyright terms: Public domain W3C validator