Proof of Theorem subsubrng
| Step | Hyp | Ref
| Expression |
| 1 | | subrngrcl 13759 |
. . . . 5
 SubRng 
Rng |
| 2 | 1 | adantr 276 |
. . . 4
  SubRng  SubRng  
Rng |
| 3 | | eqid 2196 |
. . . . . . . . 9
         |
| 4 | 3 | subrngss 13756 |
. . . . . . . 8
 SubRng 
      |
| 5 | 4 | adantl 277 |
. . . . . . 7
  SubRng  SubRng  
      |
| 6 | | subsubrng.s |
. . . . . . . . 9

↾s   |
| 7 | 6 | subrngbas 13762 |
. . . . . . . 8
 SubRng 
      |
| 8 | 7 | adantr 276 |
. . . . . . 7
  SubRng  SubRng  
      |
| 9 | 5, 8 | sseqtrrd 3222 |
. . . . . 6
  SubRng  SubRng  
  |
| 10 | 6 | oveq1i 5932 |
. . . . . . 7
 ↾s    ↾s 
↾s   |
| 11 | | ressabsg 12754 |
. . . . . . . . 9
  SubRng  Rng
  ↾s 
↾s   ↾s    |
| 12 | 11 | 3expa 1205 |
. . . . . . . 8
   SubRng   Rng
  ↾s 
↾s   ↾s    |
| 13 | 1, 12 | mpidan 423 |
. . . . . . 7
  SubRng    
↾s 
↾s   ↾s    |
| 14 | 10, 13 | eqtrid 2241 |
. . . . . 6
  SubRng    ↾s   ↾s    |
| 15 | 9, 14 | syldan 282 |
. . . . 5
  SubRng  SubRng  
 ↾s   ↾s    |
| 16 | | eqid 2196 |
. . . . . . 7
 ↾s   ↾s   |
| 17 | 16 | subrngrng 13758 |
. . . . . 6
 SubRng 
 ↾s 
Rng |
| 18 | 17 | adantl 277 |
. . . . 5
  SubRng  SubRng  
 ↾s 
Rng |
| 19 | 15, 18 | eqeltrrd 2274 |
. . . 4
  SubRng  SubRng  
 ↾s 
Rng |
| 20 | | eqid 2196 |
. . . . . . 7
         |
| 21 | 20 | subrngss 13756 |
. . . . . 6
 SubRng 
      |
| 22 | 21 | adantr 276 |
. . . . 5
  SubRng  SubRng  
      |
| 23 | 9, 22 | sstrd 3193 |
. . . 4
  SubRng  SubRng  
      |
| 24 | 20 | issubrng 13755 |
. . . 4
 SubRng   Rng 
↾s  Rng        |
| 25 | 2, 19, 23, 24 | syl3anbrc 1183 |
. . 3
  SubRng  SubRng  
SubRng    |
| 26 | 25, 9 | jca 306 |
. 2
  SubRng  SubRng  
 SubRng 
   |
| 27 | 6 | subrngrng 13758 |
. . . 4
 SubRng 
Rng |
| 28 | 27 | adantr 276 |
. . 3
  SubRng  
SubRng 
  Rng |
| 29 | 14 | adantrl 478 |
. . . 4
  SubRng  
SubRng 
   ↾s   ↾s    |
| 30 | | eqid 2196 |
. . . . . 6
 ↾s   ↾s   |
| 31 | 30 | subrngrng 13758 |
. . . . 5
 SubRng 
 ↾s 
Rng |
| 32 | 31 | ad2antrl 490 |
. . . 4
  SubRng  
SubRng 
   ↾s  Rng |
| 33 | 29, 32 | eqeltrd 2273 |
. . 3
  SubRng  
SubRng 
   ↾s  Rng |
| 34 | | simprr 531 |
. . . 4
  SubRng  
SubRng 
    |
| 35 | 7 | adantr 276 |
. . . 4
  SubRng  
SubRng 
        |
| 36 | 34, 35 | sseqtrd 3221 |
. . 3
  SubRng  
SubRng 
        |
| 37 | 3 | issubrng 13755 |
. . 3
 SubRng   Rng 
↾s  Rng        |
| 38 | 28, 33, 36, 37 | syl3anbrc 1183 |
. 2
  SubRng  
SubRng 
  SubRng    |
| 39 | 26, 38 | impbida 596 |
1
 SubRng 
 SubRng   SubRng      |