ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrng Unicode version

Theorem subsubrng 14163
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subsubrng  |-  ( A  e.  (SubRng `  R
)  ->  ( B  e.  (SubRng `  S )  <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )

Proof of Theorem subsubrng
StepHypRef Expression
1 subrngrcl 14152 . . . . 5  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
21adantr 276 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  R  e. Rng )
3 eqid 2229 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
43subrngss 14149 . . . . . . . 8  |-  ( B  e.  (SubRng `  S
)  ->  B  C_  ( Base `  S ) )
54adantl 277 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  ( Base `  S ) )
6 subsubrng.s . . . . . . . . 9  |-  S  =  ( Rs  A )
76subrngbas 14155 . . . . . . . 8  |-  ( A  e.  (SubRng `  R
)  ->  A  =  ( Base `  S )
)
87adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  A  =  ( Base `  S )
)
95, 8sseqtrrd 3263 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  A
)
106oveq1i 6004 . . . . . . 7  |-  ( Ss  B )  =  ( ( Rs  A )s  B )
11 ressabsg 13095 . . . . . . . . 9  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A  /\  R  e. Rng )  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
12113expa 1227 . . . . . . . 8  |-  ( ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  /\  R  e. Rng )  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
131, 12mpidan 423 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  ->  (
( Rs  A )s  B )  =  ( Rs  B ) )
1410, 13eqtrid 2274 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  ->  ( Ss  B )  =  ( Rs  B ) )
159, 14syldan 282 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Ss  B
)  =  ( Rs  B ) )
16 eqid 2229 . . . . . . 7  |-  ( Ss  B )  =  ( Ss  B )
1716subrngrng 14151 . . . . . 6  |-  ( B  e.  (SubRng `  S
)  ->  ( Ss  B
)  e. Rng )
1817adantl 277 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Ss  B
)  e. Rng )
1915, 18eqeltrrd 2307 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Rs  B
)  e. Rng )
20 eqid 2229 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
2120subrngss 14149 . . . . . 6  |-  ( A  e.  (SubRng `  R
)  ->  A  C_  ( Base `  R ) )
2221adantr 276 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  A  C_  ( Base `  R ) )
239, 22sstrd 3234 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  ( Base `  R ) )
2420issubrng 14148 . . . 4  |-  ( B  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  B )  e. Rng  /\  B  C_  ( Base `  R
) ) )
252, 19, 23, 24syl3anbrc 1205 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  e.  (SubRng `  R ) )
2625, 9jca 306 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) )
276subrngrng 14151 . . . 4  |-  ( A  e.  (SubRng `  R
)  ->  S  e. Rng )
2827adantr 276 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  S  e. Rng )
2914adantrl 478 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Ss  B )  =  ( Rs  B ) )
30 eqid 2229 . . . . . 6  |-  ( Rs  B )  =  ( Rs  B )
3130subrngrng 14151 . . . . 5  |-  ( B  e.  (SubRng `  R
)  ->  ( Rs  B
)  e. Rng )
3231ad2antrl 490 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Rs  B )  e. Rng )
3329, 32eqeltrd 2306 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Ss  B )  e. Rng )
34 simprr 531 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  C_  A )
357adantr 276 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  A  =  ( Base `  S
) )
3634, 35sseqtrd 3262 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  C_  ( Base `  S
) )
373issubrng 14148 . . 3  |-  ( B  e.  (SubRng `  S
)  <->  ( S  e. Rng  /\  ( Ss  B )  e. Rng  /\  B  C_  ( Base `  S
) ) )
3828, 33, 36, 37syl3anbrc 1205 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  e.  (SubRng `  S )
)
3926, 38impbida 598 1  |-  ( A  e.  (SubRng `  R
)  ->  ( B  e.  (SubRng `  S )  <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   ` cfv 5314  (class class class)co 5994   Basecbs 13018   ↾s cress 13019  Rngcrng 13881  SubRngcsubrng 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-subg 13693  df-abl 13810  df-rng 13882  df-subrng 14147
This theorem is referenced by:  subsubrng2  14164
  Copyright terms: Public domain W3C validator