ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrng Unicode version

Theorem subsubrng 13558
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subsubrng  |-  ( A  e.  (SubRng `  R
)  ->  ( B  e.  (SubRng `  S )  <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )

Proof of Theorem subsubrng
StepHypRef Expression
1 subrngrcl 13547 . . . . 5  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
21adantr 276 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  R  e. Rng )
3 eqid 2189 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
43subrngss 13544 . . . . . . . 8  |-  ( B  e.  (SubRng `  S
)  ->  B  C_  ( Base `  S ) )
54adantl 277 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  ( Base `  S ) )
6 subsubrng.s . . . . . . . . 9  |-  S  =  ( Rs  A )
76subrngbas 13550 . . . . . . . 8  |-  ( A  e.  (SubRng `  R
)  ->  A  =  ( Base `  S )
)
87adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  A  =  ( Base `  S )
)
95, 8sseqtrrd 3209 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  A
)
106oveq1i 5905 . . . . . . 7  |-  ( Ss  B )  =  ( ( Rs  A )s  B )
11 ressabsg 12585 . . . . . . . . 9  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A  /\  R  e. Rng )  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
12113expa 1205 . . . . . . . 8  |-  ( ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  /\  R  e. Rng )  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
131, 12mpidan 423 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  ->  (
( Rs  A )s  B )  =  ( Rs  B ) )
1410, 13eqtrid 2234 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  B  C_  A )  ->  ( Ss  B )  =  ( Rs  B ) )
159, 14syldan 282 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Ss  B
)  =  ( Rs  B ) )
16 eqid 2189 . . . . . . 7  |-  ( Ss  B )  =  ( Ss  B )
1716subrngrng 13546 . . . . . 6  |-  ( B  e.  (SubRng `  S
)  ->  ( Ss  B
)  e. Rng )
1817adantl 277 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Ss  B
)  e. Rng )
1915, 18eqeltrrd 2267 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( Rs  B
)  e. Rng )
20 eqid 2189 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
2120subrngss 13544 . . . . . 6  |-  ( A  e.  (SubRng `  R
)  ->  A  C_  ( Base `  R ) )
2221adantr 276 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  A  C_  ( Base `  R ) )
239, 22sstrd 3180 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  C_  ( Base `  R ) )
2420issubrng 13543 . . . 4  |-  ( B  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  B )  e. Rng  /\  B  C_  ( Base `  R
) ) )
252, 19, 23, 24syl3anbrc 1183 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  B  e.  (SubRng `  R ) )
2625, 9jca 306 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  S )
)  ->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) )
276subrngrng 13546 . . . 4  |-  ( A  e.  (SubRng `  R
)  ->  S  e. Rng )
2827adantr 276 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  S  e. Rng )
2914adantrl 478 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Ss  B )  =  ( Rs  B ) )
30 eqid 2189 . . . . . 6  |-  ( Rs  B )  =  ( Rs  B )
3130subrngrng 13546 . . . . 5  |-  ( B  e.  (SubRng `  R
)  ->  ( Rs  B
)  e. Rng )
3231ad2antrl 490 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Rs  B )  e. Rng )
3329, 32eqeltrd 2266 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  ( Ss  B )  e. Rng )
34 simprr 531 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  C_  A )
357adantr 276 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  A  =  ( Base `  S
) )
3634, 35sseqtrd 3208 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  C_  ( Base `  S
) )
373issubrng 13543 . . 3  |-  ( B  e.  (SubRng `  S
)  <->  ( S  e. Rng  /\  ( Ss  B )  e. Rng  /\  B  C_  ( Base `  S
) ) )
3828, 33, 36, 37syl3anbrc 1183 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  ( B  e.  (SubRng `  R
)  /\  B  C_  A
) )  ->  B  e.  (SubRng `  S )
)
3926, 38impbida 596 1  |-  ( A  e.  (SubRng `  R
)  ->  ( B  e.  (SubRng `  S )  <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160    C_ wss 3144   ` cfv 5235  (class class class)co 5895   Basecbs 12511   ↾s cress 12512  Rngcrng 13283  SubRngcsubrng 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-subg 13106  df-abl 13223  df-rng 13284  df-subrng 13542
This theorem is referenced by:  subsubrng2  13559
  Copyright terms: Public domain W3C validator