ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdc Unicode version

Theorem sumrbdc 11428
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isumrb.4  |-  ( ph  ->  M  e.  ZZ )
isumrb.5  |-  ( ph  ->  N  e.  ZZ )
isumrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
isumrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
isumrb.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
sumrbdc  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, N    ph, k    k, M
Allowed substitution hints:    B( k)    C( k)    F( k)

Proof of Theorem sumrbdc
StepHypRef Expression
1 isumrb.5 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
21adantr 276 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10486 . . . 4  |-  seq M
(  +  ,  F
)  e.  _V
4 climres 11352 . . . 4  |-  ( ( N  e.  ZZ  /\  seq M (  +  ,  F )  e.  _V )  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
52, 3, 4sylancl 413 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
6 isumrb.7 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 isummo.1 . . . . . 6  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
8 isummo.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 isumrb.mdc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12sumrbdclem 11426 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
146, 13mpidan 423 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  +  ,  F ) )
1514breq1d 4031 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
165, 15bitr3d 190 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
17 isumrb.6 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
188adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  A )  ->  B  e.  CC )
19 isumrb.ndc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
2019adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
21 simpr 110 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
227, 18, 20, 21sumrbdclem 11426 . . . . 5  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  A  C_  ( ZZ>=
`  M ) )  ->  (  seq N
(  +  ,  F
)  |`  ( ZZ>= `  M
) )  =  seq M (  +  ,  F ) )
2317, 22mpidan 423 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  =  seq M (  +  ,  F ) )
2423breq1d 4031 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
25 isumrb.4 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2625adantr 276 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
27 seqex 10486 . . . 4  |-  seq N
(  +  ,  F
)  e.  _V
28 climres 11352 . . . 4  |-  ( ( M  e.  ZZ  /\  seq N (  +  ,  F )  e.  _V )  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
2926, 27, 28sylancl 413 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
3024, 29bitr3d 190 . 2  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
31 uztric 9585 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3225, 1, 31syl2anc 411 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3316, 30, 32mpjaodan 799 1  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160   _Vcvv 2752    C_ wss 3144   ifcif 3549   class class class wbr 4021    |-> cmpt 4082    |` cres 4649   ` cfv 5238   CCcc 7844   0cc0 7846    + caddc 7849   ZZcz 9288   ZZ>=cuz 9563    seqcseq 10484    ~~> cli 11327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-inn 8955  df-n0 9212  df-z 9289  df-uz 9564  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-clim 11328
This theorem is referenced by:  summodc  11432  zsumdc  11433
  Copyright terms: Public domain W3C validator