ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdc Unicode version

Theorem sumrbdc 11353
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isumrb.4  |-  ( ph  ->  M  e.  ZZ )
isumrb.5  |-  ( ph  ->  N  e.  ZZ )
isumrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
isumrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
isumrb.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
sumrbdc  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, N    ph, k    k, M
Allowed substitution hints:    B( k)    C( k)    F( k)

Proof of Theorem sumrbdc
StepHypRef Expression
1 isumrb.5 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
21adantr 276 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10415 . . . 4  |-  seq M
(  +  ,  F
)  e.  _V
4 climres 11277 . . . 4  |-  ( ( N  e.  ZZ  /\  seq M (  +  ,  F )  e.  _V )  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
52, 3, 4sylancl 413 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
6 isumrb.7 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 isummo.1 . . . . . 6  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
8 isummo.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 isumrb.mdc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12sumrbdclem 11351 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
146, 13mpidan 423 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  +  ,  F ) )
1514breq1d 4008 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
165, 15bitr3d 190 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
17 isumrb.6 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
188adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  A )  ->  B  e.  CC )
19 isumrb.ndc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
2019adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
21 simpr 110 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
227, 18, 20, 21sumrbdclem 11351 . . . . 5  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  A  C_  ( ZZ>=
`  M ) )  ->  (  seq N
(  +  ,  F
)  |`  ( ZZ>= `  M
) )  =  seq M (  +  ,  F ) )
2317, 22mpidan 423 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  =  seq M (  +  ,  F ) )
2423breq1d 4008 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
25 isumrb.4 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2625adantr 276 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
27 seqex 10415 . . . 4  |-  seq N
(  +  ,  F
)  e.  _V
28 climres 11277 . . . 4  |-  ( ( M  e.  ZZ  /\  seq N (  +  ,  F )  e.  _V )  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
2926, 27, 28sylancl 413 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
3024, 29bitr3d 190 . 2  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
31 uztric 9520 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3225, 1, 31syl2anc 411 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3316, 30, 32mpjaodan 798 1  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2146   _Vcvv 2735    C_ wss 3127   ifcif 3532   class class class wbr 3998    |-> cmpt 4059    |` cres 4622   ` cfv 5208   CCcc 7784   0cc0 7786    + caddc 7789   ZZcz 9224   ZZ>=cuz 9499    seqcseq 10413    ~~> cli 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-fz 9978  df-fzo 10111  df-seqfrec 10414  df-clim 11253
This theorem is referenced by:  summodc  11357  zsumdc  11358
  Copyright terms: Public domain W3C validator