ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdc Unicode version

Theorem sumrbdc 11890
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isumrb.4  |-  ( ph  ->  M  e.  ZZ )
isumrb.5  |-  ( ph  ->  N  e.  ZZ )
isumrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
isumrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
isumrb.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
sumrbdc  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, N    ph, k    k, M
Allowed substitution hints:    B( k)    C( k)    F( k)

Proof of Theorem sumrbdc
StepHypRef Expression
1 isumrb.5 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
21adantr 276 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10671 . . . 4  |-  seq M
(  +  ,  F
)  e.  _V
4 climres 11814 . . . 4  |-  ( ( N  e.  ZZ  /\  seq M (  +  ,  F )  e.  _V )  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
52, 3, 4sylancl 413 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
6 isumrb.7 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 isummo.1 . . . . . 6  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
8 isummo.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 isumrb.mdc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12sumrbdclem 11888 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
146, 13mpidan 423 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  +  ,  F ) )
1514breq1d 4093 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
165, 15bitr3d 190 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
17 isumrb.6 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
188adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  A )  ->  B  e.  CC )
19 isumrb.ndc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
2019adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
21 simpr 110 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
227, 18, 20, 21sumrbdclem 11888 . . . . 5  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  A  C_  ( ZZ>=
`  M ) )  ->  (  seq N
(  +  ,  F
)  |`  ( ZZ>= `  M
) )  =  seq M (  +  ,  F ) )
2317, 22mpidan 423 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  =  seq M (  +  ,  F ) )
2423breq1d 4093 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
25 isumrb.4 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2625adantr 276 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
27 seqex 10671 . . . 4  |-  seq N
(  +  ,  F
)  e.  _V
28 climres 11814 . . . 4  |-  ( ( M  e.  ZZ  /\  seq N (  +  ,  F )  e.  _V )  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
2926, 27, 28sylancl 413 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
3024, 29bitr3d 190 . 2  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
31 uztric 9744 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3225, 1, 31syl2anc 411 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3316, 30, 32mpjaodan 803 1  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ifcif 3602   class class class wbr 4083    |-> cmpt 4145    |` cres 4721   ` cfv 5318   CCcc 7997   0cc0 7999    + caddc 8002   ZZcz 9446   ZZ>=cuz 9722    seqcseq 10669    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-clim 11790
This theorem is referenced by:  summodc  11894  zsumdc  11895
  Copyright terms: Public domain W3C validator