ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdc Unicode version

Theorem sumrbdc 11180
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isumrb.4  |-  ( ph  ->  M  e.  ZZ )
isumrb.5  |-  ( ph  ->  N  e.  ZZ )
isumrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
isumrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
isumrb.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
sumrbdc  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, N    ph, k    k, M
Allowed substitution hints:    B( k)    C( k)    F( k)

Proof of Theorem sumrbdc
StepHypRef Expression
1 isumrb.5 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
21adantr 274 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10251 . . . 4  |-  seq M
(  +  ,  F
)  e.  _V
4 climres 11104 . . . 4  |-  ( ( N  e.  ZZ  /\  seq M (  +  ,  F )  e.  _V )  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
52, 3, 4sylancl 410 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
6 isumrb.7 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 isummo.1 . . . . . 6  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
8 isummo.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 isumrb.mdc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 109 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12sumrbdclem 11178 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
146, 13mpidan 420 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  +  ,  F ) )
1514breq1d 3947 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
165, 15bitr3d 189 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
17 isumrb.6 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
188adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  A )  ->  B  e.  CC )
19 isumrb.ndc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
2019adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
21 simpr 109 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
227, 18, 20, 21sumrbdclem 11178 . . . . 5  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  A  C_  ( ZZ>=
`  M ) )  ->  (  seq N
(  +  ,  F
)  |`  ( ZZ>= `  M
) )  =  seq M (  +  ,  F ) )
2317, 22mpidan 420 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  =  seq M (  +  ,  F ) )
2423breq1d 3947 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
25 isumrb.4 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2625adantr 274 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
27 seqex 10251 . . . 4  |-  seq N
(  +  ,  F
)  e.  _V
28 climres 11104 . . . 4  |-  ( ( M  e.  ZZ  /\  seq N (  +  ,  F )  e.  _V )  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
2926, 27, 28sylancl 410 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
3024, 29bitr3d 189 . 2  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
31 uztric 9371 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3225, 1, 31syl2anc 409 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3316, 30, 32mpjaodan 788 1  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481   _Vcvv 2689    C_ wss 3076   ifcif 3479   class class class wbr 3937    |-> cmpt 3997    |` cres 4549   ` cfv 5131   CCcc 7642   0cc0 7644    + caddc 7647   ZZcz 9078   ZZ>=cuz 9350    seqcseq 10249    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-clim 11080
This theorem is referenced by:  summodc  11184  zsumdc  11185
  Copyright terms: Public domain W3C validator