ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdc Unicode version

Theorem sumrbdc 11140
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isumrb.4  |-  ( ph  ->  M  e.  ZZ )
isumrb.5  |-  ( ph  ->  N  e.  ZZ )
isumrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
isumrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
isumrb.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
sumrbdc  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, N    ph, k    k, M
Allowed substitution hints:    B( k)    C( k)    F( k)

Proof of Theorem sumrbdc
StepHypRef Expression
1 isumrb.5 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
21adantr 274 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10213 . . . 4  |-  seq M
(  +  ,  F
)  e.  _V
4 climres 11065 . . . 4  |-  ( ( N  e.  ZZ  /\  seq M (  +  ,  F )  e.  _V )  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
52, 3, 4sylancl 409 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
6 isumrb.7 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 isummo.1 . . . . . 6  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
8 isummo.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 isumrb.mdc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 109 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12sumrbdclem 11138 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
146, 13mpidan 419 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  +  ,  F ) )
1514breq1d 3934 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  +  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
165, 15bitr3d 189 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
17 isumrb.6 . . . . 5  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
188adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  A )  ->  B  e.  CC )
19 isumrb.ndc . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
2019adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
21 simpr 109 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
227, 18, 20, 21sumrbdclem 11138 . . . . 5  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  N )
)  /\  A  C_  ( ZZ>=
`  M ) )  ->  (  seq N
(  +  ,  F
)  |`  ( ZZ>= `  M
) )  =  seq M (  +  ,  F ) )
2317, 22mpidan 419 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  =  seq M (  +  ,  F ) )
2423breq1d 3934 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq M (  +  ,  F )  ~~>  C ) )
25 isumrb.4 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2625adantr 274 . . . 4  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
27 seqex 10213 . . . 4  |-  seq N
(  +  ,  F
)  e.  _V
28 climres 11065 . . . 4  |-  ( ( M  e.  ZZ  /\  seq N (  +  ,  F )  e.  _V )  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
2926, 27, 28sylancl 409 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  ( (  seq N (  +  ,  F )  |`  ( ZZ>=
`  M ) )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
3024, 29bitr3d 189 . 2  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
31 uztric 9340 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3225, 1, 31syl2anc 408 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
3316, 30, 32mpjaodan 787 1  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   _Vcvv 2681    C_ wss 3066   ifcif 3469   class class class wbr 3924    |-> cmpt 3984    |` cres 4536   ` cfv 5118   CCcc 7611   0cc0 7613    + caddc 7616   ZZcz 9047   ZZ>=cuz 9319    seqcseq 10211    ~~> cli 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-clim 11041
This theorem is referenced by:  summodc  11145  zsumdc  11146
  Copyright terms: Public domain W3C validator