ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxxbr Unicode version

Theorem dvaddxxbr 14880
Description: The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvaddbr.s  |-  ( ph  ->  S  C_  CC )
dvadd.bf  |-  ( ph  ->  C ( S  _D  F ) K )
dvadd.bg  |-  ( ph  ->  C ( S  _D  G ) L )
dvaddcntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvaddxxbr  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )

Proof of Theorem dvaddxxbr
Dummy variables  y  z  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bg . . . 4  |-  ( ph  ->  C ( S  _D  G ) L )
2 eqid 2193 . . . . 5  |-  ( Jt  S )  =  ( Jt  S )
3 dvaddcntop.j . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
4 eqid 2193 . . . . 5  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
5 dvaddbr.s . . . . 5  |-  ( ph  ->  S  C_  CC )
6 dvaddxx.g . . . . 5  |-  ( ph  ->  G : X --> CC )
7 dvadd.x . . . . 5  |-  ( ph  ->  X  C_  S )
82, 3, 4, 5, 6, 7eldvap 14861 . . . 4  |-  ( ph  ->  ( C ( S  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
91, 8mpbid 147 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
109simpld 112 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
11 dvadd.f . . . . 5  |-  ( ph  ->  F : X --> CC )
127, 5sstrd 3190 . . . . 5  |-  ( ph  ->  X  C_  CC )
133cntoptopon 14711 . . . . . . . . 9  |-  J  e.  (TopOn `  CC )
14 resttopon 14350 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
1513, 5, 14sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
16 topontop 14193 . . . . . . . 8  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  ( Jt  S )  e.  Top )
1715, 16syl 14 . . . . . . 7  |-  ( ph  ->  ( Jt  S )  e.  Top )
18 toponuni 14194 . . . . . . . . 9  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Jt  S ) )
1915, 18syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  U. ( Jt  S ) )
207, 19sseqtrd 3218 . . . . . . 7  |-  ( ph  ->  X  C_  U. ( Jt  S ) )
21 eqid 2193 . . . . . . . 8  |-  U. ( Jt  S )  =  U. ( Jt  S )
2221ntrss2 14300 . . . . . . 7  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S ) )  -> 
( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2317, 20, 22syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  X )  C_  X
)
24 dvadd.bf . . . . . . . 8  |-  ( ph  ->  C ( S  _D  F ) K )
25 eqid 2193 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) )
262, 3, 25, 5, 11, 7eldvap 14861 . . . . . . . 8  |-  ( ph  ->  ( C ( S  _D  F ) K  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
2724, 26mpbid 147 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
2827simpld 112 . . . . . 6  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
2923, 28sseldd 3181 . . . . 5  |-  ( ph  ->  C  e.  X )
3011, 12, 29dvlemap 14859 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
316, 12, 29dvlemap 14859 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
32 ssidd 3201 . . . 4  |-  ( ph  ->  CC  C_  CC )
33 txtopon 14441 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
3413, 13, 33mp2an 426 . . . . 5  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
3534toponrestid 14200 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
3627simprd 114 . . . 4  |-  ( ph  ->  K  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
379simprd 114 . . . 4  |-  ( ph  ->  L  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
383addcncntop 14741 . . . . 5  |-  +  e.  ( ( J  tX  J )  Cn  J
)
395, 11, 7dvcl 14862 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  F ) K )  ->  K  e.  CC )
4024, 39mpdan 421 . . . . . 6  |-  ( ph  ->  K  e.  CC )
415, 6, 7dvcl 14862 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  G ) L )  ->  L  e.  CC )
421, 41mpdan 421 . . . . . 6  |-  ( ph  ->  L  e.  CC )
4340, 42opelxpd 4693 . . . . 5  |-  ( ph  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
4434toponunii 14196 . . . . . 6  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
4544cncnpi 14407 . . . . 5  |-  ( (  +  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  L >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  L >. )
)
4638, 43, 45sylancr 414 . . . 4  |-  ( ph  ->  +  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  L >. ) )
4730, 31, 32, 32, 3, 35, 36, 37, 46limccnp2cntop 14856 . . 3  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
48 elrabi 2914 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z  e.  X
)
4948adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  X )
5011ffnd 5405 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  X )
5150adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F  Fn  X )
526ffnd 5405 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  X )
5352adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G  Fn  X )
54 cnex 7998 . . . . . . . . . . . . 13  |-  CC  e.  _V
55 ssexg 4169 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
5612, 54, 55sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  _V )
5756adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  e.  _V )
58 inidm 3369 . . . . . . . . . . 11  |-  ( X  i^i  X )  =  X
59 eqidd 2194 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  =  ( F `  z ) )
60 eqidd 2194 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  =  ( G `  z ) )
6111adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
6261ffvelcdmda 5694 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  e.  CC )
636adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G : X --> CC )
6463ffvelcdmda 5694 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  e.  CC )
6562, 64addcld 8041 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F `  z
)  +  ( G `
 z ) )  e.  CC )
6651, 53, 57, 57, 58, 59, 60, 65ofvalg 6142 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
6749, 66mpdan 421 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
68 eqidd 2194 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  =  ( F `  C ) )
69 eqidd 2194 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  =  ( G `  C ) )
7061ffvelcdmda 5694 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  e.  CC )
7163ffvelcdmda 5694 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  e.  CC )
7270, 71addcld 8041 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F `  C
)  +  ( G `
 C ) )  e.  CC )
7351, 53, 57, 57, 58, 68, 69, 72ofvalg 6142 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7429, 73mpidan 423 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7567, 74oveq12d 5937 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  +  ( G `
 z ) )  -  ( ( F `
 C )  +  ( G `  C
) ) ) )
76 ffvelcdm 5692 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
7711, 48, 76syl2an 289 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
7863, 49ffvelcdmd 5695 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  z
)  e.  CC )
7911, 29ffvelcdmd 5695 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
8079adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
816, 29ffvelcdmd 5695 . . . . . . . . . 10  |-  ( ph  ->  ( G `  C
)  e.  CC )
8281adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  C
)  e.  CC )
8377, 78, 80, 82addsub4d 8379 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  +  ( G `  z
) )  -  (
( F `  C
)  +  ( G `
 C ) ) )  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8475, 83eqtrd 2226 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8584oveq1d 5934 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  +  ( ( G `  z )  -  ( G `  C ) ) )  /  ( z  -  C ) ) )
8661, 49ffvelcdmd 5695 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
8786, 80subcld 8332 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
8878, 82subcld 8332 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
89 ssrab2 3265 . . . . . . . . . 10  |-  { w  e.  X  |  w #  C }  C_  X
9089, 12sstrid 3191 . . . . . . . . 9  |-  ( ph  ->  { w  e.  X  |  w #  C }  C_  CC )
9190sselda 3180 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  CC )
9212, 29sseldd 3181 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
9392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
9491, 93subcld 8332 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
)  e.  CC )
95 breq1 4033 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w #  C  <->  z #  C
) )
9695elrab 2917 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  C } 
<->  ( z  e.  X  /\  z #  C )
)
9796simprbi 275 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z #  C )
9897adantl 277 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z #  C )
9991, 93, 98subap0d 8665 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
) #  0 )
10087, 88, 94, 99divdirapd 8850 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  +  ( ( G `  z )  -  ( G `  C )
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
10185, 100eqtrd 2226 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
102101mpteq2dva 4120 . . . 4  |-  ( ph  ->  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) )
103102oveq1d 5934 . . 3  |-  ( ph  ->  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
10447, 103eleqtrrd 2273 . 2  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
105 eqid 2193 . . 3  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )
106 addcl 7999 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
107106adantl 277 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
108107, 11, 6, 56, 56, 58off 6145 . . 3  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
1092, 3, 105, 5, 108, 7eldvap 14861 . 2  |-  ( ph  ->  ( C ( S  _D  ( F  oF  +  G )
) ( K  +  L )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  ( K  +  L )  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
) ) ) )
11010, 104, 109mpbir2and 946 1  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760    C_ wss 3154   <.cop 3622   U.cuni 3836   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658    o. ccom 4664    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919    oFcof 6130   CCcc 7872    + caddc 7877    - cmin 8192   # cap 8602    / cdiv 8693   abscabs 11144   ↾t crest 12853   MetOpencmopn 14040   Topctop 14176  TopOnctopon 14189   intcnt 14272    Cn ccn 14364    CnP ccnp 14365    tX ctx 14431   lim CC climc 14833    _D cdv 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pm 6707  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-limced 14835  df-dvap 14836
This theorem is referenced by:  dvaddxx  14882  dviaddf  14884
  Copyright terms: Public domain W3C validator