ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxxbr Unicode version

Theorem dvaddxxbr 13025
Description: The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvaddbr.s  |-  ( ph  ->  S  C_  CC )
dvadd.bf  |-  ( ph  ->  C ( S  _D  F ) K )
dvadd.bg  |-  ( ph  ->  C ( S  _D  G ) L )
dvaddcntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvaddxxbr  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )

Proof of Theorem dvaddxxbr
Dummy variables  y  z  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bg . . . 4  |-  ( ph  ->  C ( S  _D  G ) L )
2 eqid 2157 . . . . 5  |-  ( Jt  S )  =  ( Jt  S )
3 dvaddcntop.j . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
4 eqid 2157 . . . . 5  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
5 dvaddbr.s . . . . 5  |-  ( ph  ->  S  C_  CC )
6 dvaddxx.g . . . . 5  |-  ( ph  ->  G : X --> CC )
7 dvadd.x . . . . 5  |-  ( ph  ->  X  C_  S )
82, 3, 4, 5, 6, 7eldvap 13011 . . . 4  |-  ( ph  ->  ( C ( S  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
91, 8mpbid 146 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
109simpld 111 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
11 dvadd.f . . . . 5  |-  ( ph  ->  F : X --> CC )
127, 5sstrd 3138 . . . . 5  |-  ( ph  ->  X  C_  CC )
133cntoptopon 12892 . . . . . . . . 9  |-  J  e.  (TopOn `  CC )
14 resttopon 12531 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
1513, 5, 14sylancr 411 . . . . . . . 8  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
16 topontop 12372 . . . . . . . 8  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  ( Jt  S )  e.  Top )
1715, 16syl 14 . . . . . . 7  |-  ( ph  ->  ( Jt  S )  e.  Top )
18 toponuni 12373 . . . . . . . . 9  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Jt  S ) )
1915, 18syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  U. ( Jt  S ) )
207, 19sseqtrd 3166 . . . . . . 7  |-  ( ph  ->  X  C_  U. ( Jt  S ) )
21 eqid 2157 . . . . . . . 8  |-  U. ( Jt  S )  =  U. ( Jt  S )
2221ntrss2 12481 . . . . . . 7  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S ) )  -> 
( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2317, 20, 22syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  X )  C_  X
)
24 dvadd.bf . . . . . . . 8  |-  ( ph  ->  C ( S  _D  F ) K )
25 eqid 2157 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) )
262, 3, 25, 5, 11, 7eldvap 13011 . . . . . . . 8  |-  ( ph  ->  ( C ( S  _D  F ) K  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
2724, 26mpbid 146 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
2827simpld 111 . . . . . 6  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
2923, 28sseldd 3129 . . . . 5  |-  ( ph  ->  C  e.  X )
3011, 12, 29dvlemap 13009 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
316, 12, 29dvlemap 13009 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
32 ssidd 3149 . . . 4  |-  ( ph  ->  CC  C_  CC )
33 txtopon 12622 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
3413, 13, 33mp2an 423 . . . . 5  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
3534toponrestid 12379 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
3627simprd 113 . . . 4  |-  ( ph  ->  K  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
379simprd 113 . . . 4  |-  ( ph  ->  L  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
383addcncntop 12912 . . . . 5  |-  +  e.  ( ( J  tX  J )  Cn  J
)
395, 11, 7dvcl 13012 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  F ) K )  ->  K  e.  CC )
4024, 39mpdan 418 . . . . . 6  |-  ( ph  ->  K  e.  CC )
415, 6, 7dvcl 13012 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  G ) L )  ->  L  e.  CC )
421, 41mpdan 418 . . . . . 6  |-  ( ph  ->  L  e.  CC )
4340, 42opelxpd 4616 . . . . 5  |-  ( ph  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
4434toponunii 12375 . . . . . 6  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
4544cncnpi 12588 . . . . 5  |-  ( (  +  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  L >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  L >. )
)
4638, 43, 45sylancr 411 . . . 4  |-  ( ph  ->  +  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  L >. ) )
4730, 31, 32, 32, 3, 35, 36, 37, 46limccnp2cntop 13006 . . 3  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
48 elrabi 2865 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z  e.  X
)
4948adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  X )
5011ffnd 5317 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  X )
5150adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F  Fn  X )
526ffnd 5317 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  X )
5352adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G  Fn  X )
54 cnex 7839 . . . . . . . . . . . . 13  |-  CC  e.  _V
55 ssexg 4103 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
5612, 54, 55sylancl 410 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  _V )
5756adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  e.  _V )
58 inidm 3316 . . . . . . . . . . 11  |-  ( X  i^i  X )  =  X
59 eqidd 2158 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  =  ( F `  z ) )
60 eqidd 2158 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  =  ( G `  z ) )
6111adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
6261ffvelrnda 5599 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  e.  CC )
636adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G : X --> CC )
6463ffvelrnda 5599 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  e.  CC )
6562, 64addcld 7880 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F `  z
)  +  ( G `
 z ) )  e.  CC )
6651, 53, 57, 57, 58, 59, 60, 65ofvalg 6035 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
6749, 66mpdan 418 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
68 eqidd 2158 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  =  ( F `  C ) )
69 eqidd 2158 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  =  ( G `  C ) )
7061ffvelrnda 5599 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  e.  CC )
7163ffvelrnda 5599 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  e.  CC )
7270, 71addcld 7880 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F `  C
)  +  ( G `
 C ) )  e.  CC )
7351, 53, 57, 57, 58, 68, 69, 72ofvalg 6035 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7429, 73mpidan 420 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7567, 74oveq12d 5836 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  +  ( G `
 z ) )  -  ( ( F `
 C )  +  ( G `  C
) ) ) )
76 ffvelrn 5597 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
7711, 48, 76syl2an 287 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
7863, 49ffvelrnd 5600 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  z
)  e.  CC )
7911, 29ffvelrnd 5600 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
8079adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
816, 29ffvelrnd 5600 . . . . . . . . . 10  |-  ( ph  ->  ( G `  C
)  e.  CC )
8281adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  C
)  e.  CC )
8377, 78, 80, 82addsub4d 8216 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  +  ( G `  z
) )  -  (
( F `  C
)  +  ( G `
 C ) ) )  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8475, 83eqtrd 2190 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8584oveq1d 5833 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  +  ( ( G `  z )  -  ( G `  C ) ) )  /  ( z  -  C ) ) )
8661, 49ffvelrnd 5600 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
8786, 80subcld 8169 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
8878, 82subcld 8169 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
89 ssrab2 3213 . . . . . . . . . 10  |-  { w  e.  X  |  w #  C }  C_  X
9089, 12sstrid 3139 . . . . . . . . 9  |-  ( ph  ->  { w  e.  X  |  w #  C }  C_  CC )
9190sselda 3128 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  CC )
9212, 29sseldd 3129 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
9392adantr 274 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
9491, 93subcld 8169 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
)  e.  CC )
95 breq1 3968 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w #  C  <->  z #  C
) )
9695elrab 2868 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  C } 
<->  ( z  e.  X  /\  z #  C )
)
9796simprbi 273 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z #  C )
9897adantl 275 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z #  C )
9991, 93, 98subap0d 8502 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
) #  0 )
10087, 88, 94, 99divdirapd 8685 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  +  ( ( G `  z )  -  ( G `  C )
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
10185, 100eqtrd 2190 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
102101mpteq2dva 4054 . . . 4  |-  ( ph  ->  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) )
103102oveq1d 5833 . . 3  |-  ( ph  ->  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
10447, 103eleqtrrd 2237 . 2  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
105 eqid 2157 . . 3  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )
106 addcl 7840 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
107106adantl 275 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
108107, 11, 6, 56, 56, 58off 6038 . . 3  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
1092, 3, 105, 5, 108, 7eldvap 13011 . 2  |-  ( ph  ->  ( C ( S  _D  ( F  oF  +  G )
) ( K  +  L )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  ( K  +  L )  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
) ) ) )
11010, 104, 109mpbir2and 929 1  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   {crab 2439   _Vcvv 2712    C_ wss 3102   <.cop 3563   U.cuni 3772   class class class wbr 3965    |-> cmpt 4025    X. cxp 4581    o. ccom 4587    Fn wfn 5162   -->wf 5163   ` cfv 5167  (class class class)co 5818    oFcof 6024   CCcc 7713    + caddc 7718    - cmin 8029   # cap 8439    / cdiv 8528   abscabs 10879   ↾t crest 12311   MetOpencmopn 12345   Topctop 12355  TopOnctopon 12368   intcnt 12453    Cn ccn 12545    CnP ccnp 12546    tX ctx 12612   lim CC climc 12983    _D cdv 12984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835  ax-addf 7837
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-of 6026  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-map 6588  df-pm 6589  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-xneg 9661  df-xadd 9662  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-rest 12313  df-topgen 12332  df-psmet 12347  df-xmet 12348  df-met 12349  df-bl 12350  df-mopn 12351  df-top 12356  df-topon 12369  df-bases 12401  df-ntr 12456  df-cn 12548  df-cnp 12549  df-tx 12613  df-limced 12985  df-dvap 12986
This theorem is referenced by:  dvaddxx  13027  dviaddf  13029
  Copyright terms: Public domain W3C validator