ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxxbr Unicode version

Theorem dvaddxxbr 15288
Description: The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvaddbr.s  |-  ( ph  ->  S  C_  CC )
dvadd.bf  |-  ( ph  ->  C ( S  _D  F ) K )
dvadd.bg  |-  ( ph  ->  C ( S  _D  G ) L )
dvaddcntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvaddxxbr  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )

Proof of Theorem dvaddxxbr
Dummy variables  y  z  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bg . . . 4  |-  ( ph  ->  C ( S  _D  G ) L )
2 eqid 2207 . . . . 5  |-  ( Jt  S )  =  ( Jt  S )
3 dvaddcntop.j . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
4 eqid 2207 . . . . 5  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
5 dvaddbr.s . . . . 5  |-  ( ph  ->  S  C_  CC )
6 dvaddxx.g . . . . 5  |-  ( ph  ->  G : X --> CC )
7 dvadd.x . . . . 5  |-  ( ph  ->  X  C_  S )
82, 3, 4, 5, 6, 7eldvap 15269 . . . 4  |-  ( ph  ->  ( C ( S  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
91, 8mpbid 147 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
109simpld 112 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
11 dvadd.f . . . . 5  |-  ( ph  ->  F : X --> CC )
127, 5sstrd 3211 . . . . 5  |-  ( ph  ->  X  C_  CC )
133cntoptopon 15119 . . . . . . . . 9  |-  J  e.  (TopOn `  CC )
14 resttopon 14758 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
1513, 5, 14sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
16 topontop 14601 . . . . . . . 8  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  ( Jt  S )  e.  Top )
1715, 16syl 14 . . . . . . 7  |-  ( ph  ->  ( Jt  S )  e.  Top )
18 toponuni 14602 . . . . . . . . 9  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Jt  S ) )
1915, 18syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  U. ( Jt  S ) )
207, 19sseqtrd 3239 . . . . . . 7  |-  ( ph  ->  X  C_  U. ( Jt  S ) )
21 eqid 2207 . . . . . . . 8  |-  U. ( Jt  S )  =  U. ( Jt  S )
2221ntrss2 14708 . . . . . . 7  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S ) )  -> 
( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2317, 20, 22syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  X )  C_  X
)
24 dvadd.bf . . . . . . . 8  |-  ( ph  ->  C ( S  _D  F ) K )
25 eqid 2207 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) )
262, 3, 25, 5, 11, 7eldvap 15269 . . . . . . . 8  |-  ( ph  ->  ( C ( S  _D  F ) K  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
2724, 26mpbid 147 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
2827simpld 112 . . . . . 6  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
2923, 28sseldd 3202 . . . . 5  |-  ( ph  ->  C  e.  X )
3011, 12, 29dvlemap 15267 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
316, 12, 29dvlemap 15267 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
32 ssidd 3222 . . . 4  |-  ( ph  ->  CC  C_  CC )
33 txtopon 14849 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
3413, 13, 33mp2an 426 . . . . 5  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
3534toponrestid 14608 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
3627simprd 114 . . . 4  |-  ( ph  ->  K  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
379simprd 114 . . . 4  |-  ( ph  ->  L  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
383addcncntop 15149 . . . . 5  |-  +  e.  ( ( J  tX  J )  Cn  J
)
395, 11, 7dvcl 15270 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  F ) K )  ->  K  e.  CC )
4024, 39mpdan 421 . . . . . 6  |-  ( ph  ->  K  e.  CC )
415, 6, 7dvcl 15270 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  G ) L )  ->  L  e.  CC )
421, 41mpdan 421 . . . . . 6  |-  ( ph  ->  L  e.  CC )
4340, 42opelxpd 4726 . . . . 5  |-  ( ph  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
4434toponunii 14604 . . . . . 6  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
4544cncnpi 14815 . . . . 5  |-  ( (  +  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  L >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  L >. )
)
4638, 43, 45sylancr 414 . . . 4  |-  ( ph  ->  +  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  L >. ) )
4730, 31, 32, 32, 3, 35, 36, 37, 46limccnp2cntop 15264 . . 3  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
48 elrabi 2933 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z  e.  X
)
4948adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  X )
5011ffnd 5446 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  X )
5150adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F  Fn  X )
526ffnd 5446 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  X )
5352adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G  Fn  X )
54 cnex 8084 . . . . . . . . . . . . 13  |-  CC  e.  _V
55 ssexg 4199 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
5612, 54, 55sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  _V )
5756adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  e.  _V )
58 inidm 3390 . . . . . . . . . . 11  |-  ( X  i^i  X )  =  X
59 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  =  ( F `  z ) )
60 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  =  ( G `  z ) )
6111adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
6261ffvelcdmda 5738 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  e.  CC )
636adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G : X --> CC )
6463ffvelcdmda 5738 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  e.  CC )
6562, 64addcld 8127 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F `  z
)  +  ( G `
 z ) )  e.  CC )
6651, 53, 57, 57, 58, 59, 60, 65ofvalg 6191 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
6749, 66mpdan 421 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
68 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  =  ( F `  C ) )
69 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  =  ( G `  C ) )
7061ffvelcdmda 5738 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  e.  CC )
7163ffvelcdmda 5738 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  e.  CC )
7270, 71addcld 8127 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F `  C
)  +  ( G `
 C ) )  e.  CC )
7351, 53, 57, 57, 58, 68, 69, 72ofvalg 6191 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7429, 73mpidan 423 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7567, 74oveq12d 5985 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  +  ( G `
 z ) )  -  ( ( F `
 C )  +  ( G `  C
) ) ) )
76 ffvelcdm 5736 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
7711, 48, 76syl2an 289 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
7863, 49ffvelcdmd 5739 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  z
)  e.  CC )
7911, 29ffvelcdmd 5739 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
8079adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
816, 29ffvelcdmd 5739 . . . . . . . . . 10  |-  ( ph  ->  ( G `  C
)  e.  CC )
8281adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  C
)  e.  CC )
8377, 78, 80, 82addsub4d 8465 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  +  ( G `  z
) )  -  (
( F `  C
)  +  ( G `
 C ) ) )  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8475, 83eqtrd 2240 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8584oveq1d 5982 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  +  ( ( G `  z )  -  ( G `  C ) ) )  /  ( z  -  C ) ) )
8661, 49ffvelcdmd 5739 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
8786, 80subcld 8418 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
8878, 82subcld 8418 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
89 ssrab2 3286 . . . . . . . . . 10  |-  { w  e.  X  |  w #  C }  C_  X
9089, 12sstrid 3212 . . . . . . . . 9  |-  ( ph  ->  { w  e.  X  |  w #  C }  C_  CC )
9190sselda 3201 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  CC )
9212, 29sseldd 3202 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
9392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
9491, 93subcld 8418 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
)  e.  CC )
95 breq1 4062 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w #  C  <->  z #  C
) )
9695elrab 2936 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  C } 
<->  ( z  e.  X  /\  z #  C )
)
9796simprbi 275 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z #  C )
9897adantl 277 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z #  C )
9991, 93, 98subap0d 8752 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
) #  0 )
10087, 88, 94, 99divdirapd 8937 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  +  ( ( G `  z )  -  ( G `  C )
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
10185, 100eqtrd 2240 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
102101mpteq2dva 4150 . . . 4  |-  ( ph  ->  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) )
103102oveq1d 5982 . . 3  |-  ( ph  ->  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
10447, 103eleqtrrd 2287 . 2  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
105 eqid 2207 . . 3  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )
106 addcl 8085 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
107106adantl 277 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
108107, 11, 6, 56, 56, 58off 6194 . . 3  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
1092, 3, 105, 5, 108, 7eldvap 15269 . 2  |-  ( ph  ->  ( C ( S  _D  ( F  oF  +  G )
) ( K  +  L )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  ( K  +  L )  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
) ) ) )
11010, 104, 109mpbir2and 947 1  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {crab 2490   _Vcvv 2776    C_ wss 3174   <.cop 3646   U.cuni 3864   class class class wbr 4059    |-> cmpt 4121    X. cxp 4691    o. ccom 4697    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967    oFcof 6179   CCcc 7958    + caddc 7963    - cmin 8278   # cap 8689    / cdiv 8780   abscabs 11423   ↾t crest 13186   MetOpencmopn 14418   Topctop 14584  TopOnctopon 14597   intcnt 14680    Cn ccn 14772    CnP ccnp 14773    tX ctx 14839   lim CC climc 15241    _D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-addf 8082
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-limced 15243  df-dvap 15244
This theorem is referenced by:  dvaddxx  15290  dviaddf  15292
  Copyright terms: Public domain W3C validator