Step | Hyp | Ref
| Expression |
1 | | dvadd.bg |
. . . 4
|
2 | | eqid 2157 |
. . . . 5
↾t ↾t |
3 | | dvaddcntop.j |
. . . . 5
|
4 | | eqid 2157 |
. . . . 5
# # |
5 | | dvaddbr.s |
. . . . 5
|
6 | | dvaddxx.g |
. . . . 5
|
7 | | dvadd.x |
. . . . 5
|
8 | 2, 3, 4, 5, 6, 7 | eldvap 13011 |
. . . 4
↾t #
lim |
9 | 1, 8 | mpbid 146 |
. . 3
↾t #
lim |
10 | 9 | simpld 111 |
. 2
↾t |
11 | | dvadd.f |
. . . . 5
|
12 | 7, 5 | sstrd 3138 |
. . . . 5
|
13 | 3 | cntoptopon 12892 |
. . . . . . . . 9
TopOn |
14 | | resttopon 12531 |
. . . . . . . . 9
TopOn
↾t TopOn |
15 | 13, 5, 14 | sylancr 411 |
. . . . . . . 8
↾t TopOn |
16 | | topontop 12372 |
. . . . . . . 8
↾t TopOn ↾t |
17 | 15, 16 | syl 14 |
. . . . . . 7
↾t |
18 | | toponuni 12373 |
. . . . . . . . 9
↾t TopOn ↾t |
19 | 15, 18 | syl 14 |
. . . . . . . 8
↾t |
20 | 7, 19 | sseqtrd 3166 |
. . . . . . 7
↾t |
21 | | eqid 2157 |
. . . . . . . 8
↾t
↾t |
22 | 21 | ntrss2 12481 |
. . . . . . 7
↾t
↾t ↾t |
23 | 17, 20, 22 | syl2anc 409 |
. . . . . 6
↾t |
24 | | dvadd.bf |
. . . . . . . 8
|
25 | | eqid 2157 |
. . . . . . . . 9
# # |
26 | 2, 3, 25, 5, 11, 7 | eldvap 13011 |
. . . . . . . 8
↾t #
lim |
27 | 24, 26 | mpbid 146 |
. . . . . . 7
↾t #
lim |
28 | 27 | simpld 111 |
. . . . . 6
↾t |
29 | 23, 28 | sseldd 3129 |
. . . . 5
|
30 | 11, 12, 29 | dvlemap 13009 |
. . . 4
# |
31 | 6, 12, 29 | dvlemap 13009 |
. . . 4
# |
32 | | ssidd 3149 |
. . . 4
|
33 | | txtopon 12622 |
. . . . . 6
TopOn
TopOn
TopOn |
34 | 13, 13, 33 | mp2an 423 |
. . . . 5
TopOn |
35 | 34 | toponrestid 12379 |
. . . 4
↾t |
36 | 27 | simprd 113 |
. . . 4
#
lim |
37 | 9 | simprd 113 |
. . . 4
#
lim |
38 | 3 | addcncntop 12912 |
. . . . 5
|
39 | 5, 11, 7 | dvcl 13012 |
. . . . . . 7
|
40 | 24, 39 | mpdan 418 |
. . . . . 6
|
41 | 5, 6, 7 | dvcl 13012 |
. . . . . . 7
|
42 | 1, 41 | mpdan 418 |
. . . . . 6
|
43 | 40, 42 | opelxpd 4616 |
. . . . 5
|
44 | 34 | toponunii 12375 |
. . . . . 6
|
45 | 44 | cncnpi 12588 |
. . . . 5
|
46 | 38, 43, 45 | sylancr 411 |
. . . 4
|
47 | 30, 31, 32, 32, 3, 35, 36, 37, 46 | limccnp2cntop 13006 |
. . 3
#
lim |
48 | | elrabi 2865 |
. . . . . . . . . . 11
# |
49 | 48 | adantl 275 |
. . . . . . . . . 10
# |
50 | 11 | ffnd 5317 |
. . . . . . . . . . . 12
|
51 | 50 | adantr 274 |
. . . . . . . . . . 11
#
|
52 | 6 | ffnd 5317 |
. . . . . . . . . . . 12
|
53 | 52 | adantr 274 |
. . . . . . . . . . 11
#
|
54 | | cnex 7839 |
. . . . . . . . . . . . 13
|
55 | | ssexg 4103 |
. . . . . . . . . . . . 13
|
56 | 12, 54, 55 | sylancl 410 |
. . . . . . . . . . . 12
|
57 | 56 | adantr 274 |
. . . . . . . . . . 11
#
|
58 | | inidm 3316 |
. . . . . . . . . . 11
|
59 | | eqidd 2158 |
. . . . . . . . . . 11
#
|
60 | | eqidd 2158 |
. . . . . . . . . . 11
#
|
61 | 11 | adantr 274 |
. . . . . . . . . . . . 13
# |
62 | 61 | ffvelrnda 5599 |
. . . . . . . . . . . 12
#
|
63 | 6 | adantr 274 |
. . . . . . . . . . . . 13
# |
64 | 63 | ffvelrnda 5599 |
. . . . . . . . . . . 12
#
|
65 | 62, 64 | addcld 7880 |
. . . . . . . . . . 11
#
|
66 | 51, 53, 57, 57, 58, 59, 60, 65 | ofvalg 6035 |
. . . . . . . . . 10
#
|
67 | 49, 66 | mpdan 418 |
. . . . . . . . 9
#
|
68 | | eqidd 2158 |
. . . . . . . . . . 11
#
|
69 | | eqidd 2158 |
. . . . . . . . . . 11
#
|
70 | 61 | ffvelrnda 5599 |
. . . . . . . . . . . 12
#
|
71 | 63 | ffvelrnda 5599 |
. . . . . . . . . . . 12
#
|
72 | 70, 71 | addcld 7880 |
. . . . . . . . . . 11
#
|
73 | 51, 53, 57, 57, 58, 68, 69, 72 | ofvalg 6035 |
. . . . . . . . . 10
#
|
74 | 29, 73 | mpidan 420 |
. . . . . . . . 9
#
|
75 | 67, 74 | oveq12d 5836 |
. . . . . . . 8
# |
76 | | ffvelrn 5597 |
. . . . . . . . . 10
|
77 | 11, 48, 76 | syl2an 287 |
. . . . . . . . 9
# |
78 | 63, 49 | ffvelrnd 5600 |
. . . . . . . . 9
# |
79 | 11, 29 | ffvelrnd 5600 |
. . . . . . . . . 10
|
80 | 79 | adantr 274 |
. . . . . . . . 9
# |
81 | 6, 29 | ffvelrnd 5600 |
. . . . . . . . . 10
|
82 | 81 | adantr 274 |
. . . . . . . . 9
# |
83 | 77, 78, 80, 82 | addsub4d 8216 |
. . . . . . . 8
# |
84 | 75, 83 | eqtrd 2190 |
. . . . . . 7
# |
85 | 84 | oveq1d 5833 |
. . . . . 6
# |
86 | 61, 49 | ffvelrnd 5600 |
. . . . . . . 8
# |
87 | 86, 80 | subcld 8169 |
. . . . . . 7
# |
88 | 78, 82 | subcld 8169 |
. . . . . . 7
# |
89 | | ssrab2 3213 |
. . . . . . . . . 10
#
|
90 | 89, 12 | sstrid 3139 |
. . . . . . . . 9
#
|
91 | 90 | sselda 3128 |
. . . . . . . 8
# |
92 | 12, 29 | sseldd 3129 |
. . . . . . . . 9
|
93 | 92 | adantr 274 |
. . . . . . . 8
#
|
94 | 91, 93 | subcld 8169 |
. . . . . . 7
# |
95 | | breq1 3968 |
. . . . . . . . . . 11
#
# |
96 | 95 | elrab 2868 |
. . . . . . . . . 10
# #
|
97 | 96 | simprbi 273 |
. . . . . . . . 9
# # |
98 | 97 | adantl 275 |
. . . . . . . 8
# # |
99 | 91, 93, 98 | subap0d 8502 |
. . . . . . 7
# # |
100 | 87, 88, 94, 99 | divdirapd 8685 |
. . . . . 6
# |
101 | 85, 100 | eqtrd 2190 |
. . . . 5
# |
102 | 101 | mpteq2dva 4054 |
. . . 4
#
# |
103 | 102 | oveq1d 5833 |
. . 3
#
lim
#
lim |
104 | 47, 103 | eleqtrrd 2237 |
. 2
#
lim |
105 | | eqid 2157 |
. . 3
# #
|
106 | | addcl 7840 |
. . . . 5
|
107 | 106 | adantl 275 |
. . . 4
|
108 | 107, 11, 6, 56, 56, 58 | off 6038 |
. . 3
|
109 | 2, 3, 105, 5, 108, 7 | eldvap 13011 |
. 2
↾t
#
lim |
110 | 10, 104, 109 | mpbir2and 929 |
1
|