ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxxbr Unicode version

Theorem dvaddxxbr 15045
Description: The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvaddbr.s  |-  ( ph  ->  S  C_  CC )
dvadd.bf  |-  ( ph  ->  C ( S  _D  F ) K )
dvadd.bg  |-  ( ph  ->  C ( S  _D  G ) L )
dvaddcntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvaddxxbr  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )

Proof of Theorem dvaddxxbr
Dummy variables  y  z  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bg . . . 4  |-  ( ph  ->  C ( S  _D  G ) L )
2 eqid 2196 . . . . 5  |-  ( Jt  S )  =  ( Jt  S )
3 dvaddcntop.j . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
4 eqid 2196 . . . . 5  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
5 dvaddbr.s . . . . 5  |-  ( ph  ->  S  C_  CC )
6 dvaddxx.g . . . . 5  |-  ( ph  ->  G : X --> CC )
7 dvadd.x . . . . 5  |-  ( ph  ->  X  C_  S )
82, 3, 4, 5, 6, 7eldvap 15026 . . . 4  |-  ( ph  ->  ( C ( S  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
91, 8mpbid 147 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
109simpld 112 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
11 dvadd.f . . . . 5  |-  ( ph  ->  F : X --> CC )
127, 5sstrd 3194 . . . . 5  |-  ( ph  ->  X  C_  CC )
133cntoptopon 14876 . . . . . . . . 9  |-  J  e.  (TopOn `  CC )
14 resttopon 14515 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
1513, 5, 14sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
16 topontop 14358 . . . . . . . 8  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  ( Jt  S )  e.  Top )
1715, 16syl 14 . . . . . . 7  |-  ( ph  ->  ( Jt  S )  e.  Top )
18 toponuni 14359 . . . . . . . . 9  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Jt  S ) )
1915, 18syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  U. ( Jt  S ) )
207, 19sseqtrd 3222 . . . . . . 7  |-  ( ph  ->  X  C_  U. ( Jt  S ) )
21 eqid 2196 . . . . . . . 8  |-  U. ( Jt  S )  =  U. ( Jt  S )
2221ntrss2 14465 . . . . . . 7  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S ) )  -> 
( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2317, 20, 22syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  X )  C_  X
)
24 dvadd.bf . . . . . . . 8  |-  ( ph  ->  C ( S  _D  F ) K )
25 eqid 2196 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) )
262, 3, 25, 5, 11, 7eldvap 15026 . . . . . . . 8  |-  ( ph  ->  ( C ( S  _D  F ) K  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
2724, 26mpbid 147 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
2827simpld 112 . . . . . 6  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
2923, 28sseldd 3185 . . . . 5  |-  ( ph  ->  C  e.  X )
3011, 12, 29dvlemap 15024 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
316, 12, 29dvlemap 15024 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
32 ssidd 3205 . . . 4  |-  ( ph  ->  CC  C_  CC )
33 txtopon 14606 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
3413, 13, 33mp2an 426 . . . . 5  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
3534toponrestid 14365 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
3627simprd 114 . . . 4  |-  ( ph  ->  K  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
379simprd 114 . . . 4  |-  ( ph  ->  L  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
383addcncntop 14906 . . . . 5  |-  +  e.  ( ( J  tX  J )  Cn  J
)
395, 11, 7dvcl 15027 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  F ) K )  ->  K  e.  CC )
4024, 39mpdan 421 . . . . . 6  |-  ( ph  ->  K  e.  CC )
415, 6, 7dvcl 15027 . . . . . . 7  |-  ( (
ph  /\  C ( S  _D  G ) L )  ->  L  e.  CC )
421, 41mpdan 421 . . . . . 6  |-  ( ph  ->  L  e.  CC )
4340, 42opelxpd 4697 . . . . 5  |-  ( ph  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
4434toponunii 14361 . . . . . 6  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
4544cncnpi 14572 . . . . 5  |-  ( (  +  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  L >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  L >. )
)
4638, 43, 45sylancr 414 . . . 4  |-  ( ph  ->  +  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  L >. ) )
4730, 31, 32, 32, 3, 35, 36, 37, 46limccnp2cntop 15021 . . 3  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
48 elrabi 2917 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z  e.  X
)
4948adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  X )
5011ffnd 5411 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  X )
5150adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F  Fn  X )
526ffnd 5411 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  X )
5352adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G  Fn  X )
54 cnex 8022 . . . . . . . . . . . . 13  |-  CC  e.  _V
55 ssexg 4173 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
5612, 54, 55sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  _V )
5756adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  e.  _V )
58 inidm 3373 . . . . . . . . . . 11  |-  ( X  i^i  X )  =  X
59 eqidd 2197 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  =  ( F `  z ) )
60 eqidd 2197 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  =  ( G `  z ) )
6111adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
6261ffvelcdmda 5700 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  e.  CC )
636adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G : X --> CC )
6463ffvelcdmda 5700 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  e.  CC )
6562, 64addcld 8065 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F `  z
)  +  ( G `
 z ) )  e.  CC )
6651, 53, 57, 57, 58, 59, 60, 65ofvalg 6149 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  (
( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
6749, 66mpdan 421 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
68 eqidd 2197 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  =  ( F `  C ) )
69 eqidd 2197 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  =  ( G `  C ) )
7061ffvelcdmda 5700 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  e.  CC )
7163ffvelcdmda 5700 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  e.  CC )
7270, 71addcld 8065 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F `  C
)  +  ( G `
 C ) )  e.  CC )
7351, 53, 57, 57, 58, 68, 69, 72ofvalg 6149 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  (
( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7429, 73mpidan 423 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  +  G ) `  C )  =  ( ( F `  C
)  +  ( G `
 C ) ) )
7567, 74oveq12d 5943 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  +  ( G `
 z ) )  -  ( ( F `
 C )  +  ( G `  C
) ) ) )
76 ffvelcdm 5698 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
7711, 48, 76syl2an 289 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
7863, 49ffvelcdmd 5701 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  z
)  e.  CC )
7911, 29ffvelcdmd 5701 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
8079adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
816, 29ffvelcdmd 5701 . . . . . . . . . 10  |-  ( ph  ->  ( G `  C
)  e.  CC )
8281adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  C
)  e.  CC )
8377, 78, 80, 82addsub4d 8403 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  +  ( G `  z
) )  -  (
( F `  C
)  +  ( G `
 C ) ) )  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8475, 83eqtrd 2229 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  +  G
) `  z )  -  ( ( F  oF  +  G
) `  C )
)  =  ( ( ( F `  z
)  -  ( F `
 C ) )  +  ( ( G `
 z )  -  ( G `  C ) ) ) )
8584oveq1d 5940 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  +  ( ( G `  z )  -  ( G `  C ) ) )  /  ( z  -  C ) ) )
8661, 49ffvelcdmd 5701 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
8786, 80subcld 8356 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
8878, 82subcld 8356 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
89 ssrab2 3269 . . . . . . . . . 10  |-  { w  e.  X  |  w #  C }  C_  X
9089, 12sstrid 3195 . . . . . . . . 9  |-  ( ph  ->  { w  e.  X  |  w #  C }  C_  CC )
9190sselda 3184 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  CC )
9212, 29sseldd 3185 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
9392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
9491, 93subcld 8356 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
)  e.  CC )
95 breq1 4037 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w #  C  <->  z #  C
) )
9695elrab 2920 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  C } 
<->  ( z  e.  X  /\  z #  C )
)
9796simprbi 275 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z #  C )
9897adantl 277 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z #  C )
9991, 93, 98subap0d 8690 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
) #  0 )
10087, 88, 94, 99divdirapd 8875 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  +  ( ( G `  z )  -  ( G `  C )
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
10185, 100eqtrd 2229 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) )
102101mpteq2dva 4124 . . . 4  |-  ( ph  ->  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) )
103102oveq1d 5940 . . 3  |-  ( ph  ->  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  +  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) ) lim
CC  C ) )
10447, 103eleqtrrd 2276 . 2  |-  ( ph  ->  ( K  +  L
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
105 eqid 2196 . . 3  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z )  -  (
( F  oF  +  G ) `  C ) )  / 
( z  -  C
) ) )
106 addcl 8023 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
107106adantl 277 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
108107, 11, 6, 56, 56, 58off 6152 . . 3  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
1092, 3, 105, 5, 108, 7eldvap 15026 . 2  |-  ( ph  ->  ( C ( S  _D  ( F  oF  +  G )
) ( K  +  L )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  ( K  +  L )  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  +  G ) `  z
)  -  ( ( F  oF  +  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
) ) ) )
11010, 104, 109mpbir2and 946 1  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   <.cop 3626   U.cuni 3840   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662    o. ccom 4668    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925    oFcof 6137   CCcc 7896    + caddc 7901    - cmin 8216   # cap 8627    / cdiv 8718   abscabs 11181   ↾t crest 12943   MetOpencmopn 14175   Topctop 14341  TopOnctopon 14354   intcnt 14437    Cn ccn 14529    CnP ccnp 14530    tX ctx 14596   lim CC climc 14998    _D cdv 14999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-addf 8020
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-limced 15000  df-dvap 15001
This theorem is referenced by:  dvaddxx  15047  dviaddf  15049
  Copyright terms: Public domain W3C validator