ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem2 Unicode version

Theorem prodrbdclem2 11738
Description: Lemma for prodrbdc 11739. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrb.4  |-  ( ph  ->  M  e.  ZZ )
prodrb.5  |-  ( ph  ->  N  e.  ZZ )
prodrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
prodrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
prodrbdc.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrbdc.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
prodrbdclem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodrbdclem2
StepHypRef Expression
1 prodrb.5 . . . 4  |-  ( ph  ->  N  e.  ZZ )
21adantr 276 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10541 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
4 climres 11468 . . 3  |-  ( ( N  e.  ZZ  /\  seq M (  x.  ,  F )  e.  _V )  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
52, 3, 4sylancl 413 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
6 prodrb.7 . . . 4  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 prodmo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
8 prodmo.2 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 477 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 prodrbdc.mdc . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 477 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 110 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12prodrbdclem 11736 . . . 4  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
146, 13mpidan 423 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  x.  ,  F ) )
1514breq1d 4043 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
165, 15bitr3d 190 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ifcif 3561   class class class wbr 4033    |-> cmpt 4094    |` cres 4665   ` cfv 5258   CCcc 7877   1c1 7880    x. cmul 7884   ZZcz 9326   ZZ>=cuz 9601    seqcseq 10539    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-clim 11444
This theorem is referenced by:  prodrbdc  11739
  Copyright terms: Public domain W3C validator