ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem2 Unicode version

Theorem prodrbdclem2 11514
Description: Lemma for prodrbdc 11515. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrb.4  |-  ( ph  ->  M  e.  ZZ )
prodrb.5  |-  ( ph  ->  N  e.  ZZ )
prodrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
prodrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
prodrbdc.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrbdc.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
prodrbdclem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodrbdclem2
StepHypRef Expression
1 prodrb.5 . . . 4  |-  ( ph  ->  N  e.  ZZ )
21adantr 274 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10382 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
4 climres 11244 . . 3  |-  ( ( N  e.  ZZ  /\  seq M (  x.  ,  F )  e.  _V )  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
52, 3, 4sylancl 410 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
6 prodrb.7 . . . 4  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 prodmo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
8 prodmo.2 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 469 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 prodrbdc.mdc . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 469 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 109 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12prodrbdclem 11512 . . . 4  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
146, 13mpidan 420 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  x.  ,  F ) )
1514breq1d 3992 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
165, 15bitr3d 189 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116   ifcif 3520   class class class wbr 3982    |-> cmpt 4043    |` cres 4606   ` cfv 5188   CCcc 7751   1c1 7754    x. cmul 7758   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-clim 11220
This theorem is referenced by:  prodrbdc  11515
  Copyright terms: Public domain W3C validator