ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem2 Unicode version

Theorem prodrbdclem2 11345
Description: Lemma for prodrbdc 11346. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrb.4  |-  ( ph  ->  M  e.  ZZ )
prodrb.5  |-  ( ph  ->  N  e.  ZZ )
prodrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
prodrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
prodrbdc.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrbdc.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
prodrbdclem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodrbdclem2
StepHypRef Expression
1 prodrb.5 . . . 4  |-  ( ph  ->  N  e.  ZZ )
21adantr 274 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
3 seqex 10223 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
4 climres 11075 . . 3  |-  ( ( N  e.  ZZ  /\  seq M (  x.  ,  F )  e.  _V )  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
52, 3, 4sylancl 409 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
6 prodrb.7 . . . 4  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 prodmo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
8 prodmo.2 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 468 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
10 prodrbdc.mdc . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1110adantlr 468 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
12 simpr 109 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
137, 9, 11, 12prodrbdclem 11343 . . . 4  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
146, 13mpidan 419 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  =  seq N (  x.  ,  F ) )
1514breq1d 3939 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  x.  ,  F )  |`  ( ZZ>=
`  N ) )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
165, 15bitr3d 189 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 819    = wceq 1331    e. wcel 1480   _Vcvv 2686    C_ wss 3071   ifcif 3474   class class class wbr 3929    |-> cmpt 3989    |` cres 4541   ` cfv 5123   CCcc 7621   1c1 7624    x. cmul 7628   ZZcz 9057   ZZ>=cuz 9329    seqcseq 10221    ~~> cli 11050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330  df-fz 9794  df-fzo 9923  df-seqfrec 10222  df-clim 11051
This theorem is referenced by:  prodrbdc  11346
  Copyright terms: Public domain W3C validator