ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxxbr Unicode version

Theorem dvmulxxbr 13306
Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 13308. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvaddbr.s  |-  ( ph  ->  S  C_  CC )
dvadd.bf  |-  ( ph  ->  C ( S  _D  F ) K )
dvadd.bg  |-  ( ph  ->  C ( S  _D  G ) L )
dvaddcntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvmulxxbr  |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) ) )

Proof of Theorem dvmulxxbr
Dummy variables  y  z  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . 4  |-  ( ph  ->  C ( S  _D  F ) K )
2 eqid 2165 . . . . 5  |-  ( Jt  S )  =  ( Jt  S )
3 dvaddcntop.j . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
4 eqid 2165 . . . . 5  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) )
5 dvaddbr.s . . . . 5  |-  ( ph  ->  S  C_  CC )
6 dvadd.f . . . . 5  |-  ( ph  ->  F : X --> CC )
7 dvadd.x . . . . 5  |-  ( ph  ->  X  C_  S )
82, 3, 4, 5, 6, 7eldvap 13291 . . . 4  |-  ( ph  ->  ( C ( S  _D  F ) K  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
91, 8mpbid 146 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
109simpld 111 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
117, 5sstrd 3152 . . . . . 6  |-  ( ph  ->  X  C_  CC )
123cntoptopon 13172 . . . . . . . . . 10  |-  J  e.  (TopOn `  CC )
13 resttopon 12811 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
1412, 5, 13sylancr 411 . . . . . . . . 9  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
15 topontop 12652 . . . . . . . . 9  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  ( Jt  S )  e.  Top )
1614, 15syl 14 . . . . . . . 8  |-  ( ph  ->  ( Jt  S )  e.  Top )
17 toponuni 12653 . . . . . . . . . 10  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Jt  S ) )
1814, 17syl 14 . . . . . . . . 9  |-  ( ph  ->  S  =  U. ( Jt  S ) )
197, 18sseqtrd 3180 . . . . . . . 8  |-  ( ph  ->  X  C_  U. ( Jt  S ) )
20 eqid 2165 . . . . . . . . 9  |-  U. ( Jt  S )  =  U. ( Jt  S )
2120ntrss2 12761 . . . . . . . 8  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S ) )  -> 
( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2216, 19, 21syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2322, 10sseldd 3143 . . . . . 6  |-  ( ph  ->  C  e.  X )
246, 11, 23dvlemap 13289 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
25 dvaddxx.g . . . . . . 7  |-  ( ph  ->  G : X --> CC )
2625adantr 274 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G : X --> CC )
27 elrabi 2879 . . . . . . 7  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z  e.  X
)
2827adantl 275 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  X )
2926, 28ffvelrnd 5621 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  z
)  e.  CC )
3024, 29mulcld 7919 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) )  x.  ( G `  z )
)  e.  CC )
3125, 11, 23dvlemap 13289 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
326, 23ffvelrnd 5621 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  CC )
3332adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
3431, 33mulcld 7919 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
)  e.  CC )
35 ssidd 3163 . . . 4  |-  ( ph  ->  CC  C_  CC )
36 txtopon 12902 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
3712, 12, 36mp2an 423 . . . . 5  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
3837toponrestid 12659 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
399simprd 113 . . . . 5  |-  ( ph  ->  K  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
40 cnex 7877 . . . . . . . . . . . . 13  |-  CC  e.  _V
4140a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  CC  e.  _V )
4241, 5ssexd 4122 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  _V )
43 elpm2r 6632 . . . . . . . . . . . 12  |-  ( ( ( CC  e.  _V  /\  S  e.  _V )  /\  ( G : X --> CC  /\  X  C_  S
) )  ->  G  e.  ( CC  ^pm  S
) )
4441, 42, 25, 7, 43syl22anc 1229 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
45 reldvg 13288 . . . . . . . . . . 11  |-  ( ( S  C_  CC  /\  G  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  G
) )
465, 44, 45syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  Rel  ( S  _D  G ) )
47 dvadd.bg . . . . . . . . . 10  |-  ( ph  ->  C ( S  _D  G ) L )
48 releldm 4839 . . . . . . . . . 10  |-  ( ( Rel  ( S  _D  G )  /\  C
( S  _D  G
) L )  ->  C  e.  dom  ( S  _D  G ) )
4946, 47, 48syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
50 eqid 2165 . . . . . . . . . 10  |-  ( Jt  X )  =  ( Jt  X )
5150, 3dvcnp2cntop 13303 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  G : X --> CC  /\  X  C_  S )  /\  C  e.  dom  ( S  _D  G ) )  ->  G  e.  ( ( ( Jt  X )  CnP  J ) `  C ) )
525, 25, 7, 49, 51syl31anc 1231 . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( ( Jt  X )  CnP  J
) `  C )
)
533, 50cnplimccntop 13279 . . . . . . . . 9  |-  ( ( X  C_  CC  /\  C  e.  X )  ->  ( G  e.  ( (
( Jt  X )  CnP  J
) `  C )  <->  ( G : X --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) ) )
5411, 23, 53syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( G  e.  ( ( ( Jt  X )  CnP  J ) `  C )  <->  ( G : X --> CC  /\  ( G `  C )  e.  ( G lim CC  C
) ) ) )
5552, 54mpbid 146 . . . . . . 7  |-  ( ph  ->  ( G : X --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) )
5655simprd 113 . . . . . 6  |-  ( ph  ->  ( G `  C
)  e.  ( G lim
CC  C ) )
5725, 11limcdifap 13271 . . . . . . 7  |-  ( ph  ->  ( G lim CC  C
)  =  ( ( G  |`  { w  e.  X  |  w #  C } ) lim CC  C
) )
58 ssrab2 3227 . . . . . . . . . 10  |-  { w  e.  X  |  w #  C }  C_  X
5958a1i 9 . . . . . . . . 9  |-  ( ph  ->  { w  e.  X  |  w #  C }  C_  X )
6025, 59feqresmpt 5540 . . . . . . . 8  |-  ( ph  ->  ( G  |`  { w  e.  X  |  w #  C } )  =  ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `
 z ) ) )
6160oveq1d 5857 . . . . . . 7  |-  ( ph  ->  ( ( G  |`  { w  e.  X  |  w #  C }
) lim CC  C )  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `  z ) ) lim CC  C ) )
6257, 61eqtrd 2198 . . . . . 6  |-  ( ph  ->  ( G lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `
 z ) ) lim
CC  C ) )
6356, 62eleqtrd 2245 . . . . 5  |-  ( ph  ->  ( G `  C
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `
 z ) ) lim
CC  C ) )
643mulcncntop 13194 . . . . . 6  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
655, 6, 7dvcl 13292 . . . . . . . 8  |-  ( (
ph  /\  C ( S  _D  F ) K )  ->  K  e.  CC )
661, 65mpdan 418 . . . . . . 7  |-  ( ph  ->  K  e.  CC )
6725, 23ffvelrnd 5621 . . . . . . 7  |-  ( ph  ->  ( G `  C
)  e.  CC )
6866, 67opelxpd 4637 . . . . . 6  |-  ( ph  -> 
<. K ,  ( G `
 C ) >.  e.  ( CC  X.  CC ) )
6937toponunii 12655 . . . . . . 7  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
7069cncnpi 12868 . . . . . 6  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  ( G `  C ) >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  ( G `  C ) >. )
)
7164, 68, 70sylancr 411 . . . . 5  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  ( G `  C )
>. ) )
7224, 29, 35, 35, 3, 38, 39, 63, 71limccnp2cntop 13286 . . . 4  |-  ( ph  ->  ( K  x.  ( G `  C )
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) ) ) lim
CC  C ) )
73 eqid 2165 . . . . . . . 8  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
742, 3, 73, 5, 25, 7eldvap 13291 . . . . . . 7  |-  ( ph  ->  ( C ( S  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
7547, 74mpbid 146 . . . . . 6  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
7675simprd 113 . . . . 5  |-  ( ph  ->  L  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
77 cncfmptc 13222 . . . . . . . 8  |-  ( ( ( F `  C
)  e.  CC  /\  X  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  X  |->  ( F `  C ) )  e.  ( X
-cn-> CC ) )
7832, 11, 35, 77syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( z  e.  X  |->  ( F `  C
) )  e.  ( X -cn-> CC ) )
79 eqidd 2166 . . . . . . 7  |-  ( z  =  C  ->  ( F `  C )  =  ( F `  C ) )
8078, 23, 79cnmptlimc 13283 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  X  |->  ( F `  C ) ) lim CC  C ) )
8132adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  X )  ->  ( F `  C )  e.  CC )
8281fmpttd 5640 . . . . . . . 8  |-  ( ph  ->  ( z  e.  X  |->  ( F `  C
) ) : X --> CC )
8382, 11limcdifap 13271 . . . . . . 7  |-  ( ph  ->  ( ( z  e.  X  |->  ( F `  C ) ) lim CC  C )  =  ( ( ( z  e.  X  |->  ( F `  C ) )  |`  { w  e.  X  |  w #  C }
) lim CC  C )
)
84 resmpt 4932 . . . . . . . . 9  |-  ( { w  e.  X  |  w #  C }  C_  X  ->  ( ( z  e.  X  |->  ( F `  C ) )  |`  { w  e.  X  |  w #  C }
)  =  ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `  C ) ) )
8558, 84mp1i 10 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  X  |->  ( F `  C ) )  |`  { w  e.  X  |  w #  C }
)  =  ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `  C ) ) )
8685oveq1d 5857 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  X  |->  ( F `
 C ) )  |`  { w  e.  X  |  w #  C }
) lim CC  C )  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `  C ) ) lim CC  C ) )
8783, 86eqtrd 2198 . . . . . 6  |-  ( ph  ->  ( ( z  e.  X  |->  ( F `  C ) ) lim CC  C )  =  ( ( z  e.  {
w  e.  X  |  w #  C }  |->  ( F `
 C ) ) lim
CC  C ) )
8880, 87eleqtrd 2245 . . . . 5  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `
 C ) ) lim
CC  C ) )
895, 25, 7dvcl 13292 . . . . . . . 8  |-  ( (
ph  /\  C ( S  _D  G ) L )  ->  L  e.  CC )
9047, 89mpdan 418 . . . . . . 7  |-  ( ph  ->  L  e.  CC )
9190, 32opelxpd 4637 . . . . . 6  |-  ( ph  -> 
<. L ,  ( F `
 C ) >.  e.  ( CC  X.  CC ) )
9269cncnpi 12868 . . . . . 6  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. L ,  ( F `  C ) >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. L ,  ( F `  C ) >. )
)
9364, 91, 92sylancr 411 . . . . 5  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. L ,  ( F `  C )
>. ) )
9431, 33, 35, 35, 3, 38, 76, 88, 93limccnp2cntop 13286 . . . 4  |-  ( ph  ->  ( L  x.  ( F `  C )
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( F `  C ) ) ) lim
CC  C ) )
953addcncntop 13192 . . . . 5  |-  +  e.  ( ( J  tX  J )  Cn  J
)
9666, 67mulcld 7919 . . . . . 6  |-  ( ph  ->  ( K  x.  ( G `  C )
)  e.  CC )
9790, 32mulcld 7919 . . . . . 6  |-  ( ph  ->  ( L  x.  ( F `  C )
)  e.  CC )
9896, 97opelxpd 4637 . . . . 5  |-  ( ph  -> 
<. ( K  x.  ( G `  C )
) ,  ( L  x.  ( F `  C ) ) >.  e.  ( CC  X.  CC ) )
9969cncnpi 12868 . . . . 5  |-  ( (  +  e.  ( ( J  tX  J )  Cn  J )  /\  <.
( K  x.  ( G `  C )
) ,  ( L  x.  ( F `  C ) ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. ( K  x.  ( G `
 C ) ) ,  ( L  x.  ( F `  C ) ) >. ) )
10095, 98, 99sylancr 411 . . . 4  |-  ( ph  ->  +  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. ( K  x.  ( G `  C ) ) ,  ( L  x.  ( F `  C ) ) >.
) )
10130, 34, 35, 35, 3, 38, 72, 94, 100limccnp2cntop 13286 . . 3  |-  ( ph  ->  ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) lim CC  C ) )
1026adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
103102, 28ffvelrnd 5621 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
104103, 33subcld 8209 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
105104, 29mulcld 7919 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  x.  ( G `
 z ) )  e.  CC )
10667adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  C
)  e.  CC )
10729, 106subcld 8209 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
108107, 33mulcld 7919 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  e.  CC )
10911adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  C_  CC )
110109, 28sseldd 3143 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  CC )
11111, 23sseldd 3143 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
112111adantr 274 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
113110, 112subcld 8209 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
)  e.  CC )
114 breq1 3985 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w #  C  <->  z #  C
) )
115114elrab 2882 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  C } 
<->  ( z  e.  X  /\  z #  C )
)
116115simprbi 273 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z #  C )
117116adantl 275 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z #  C )
118110, 112, 117subap0d 8542 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
) #  0 )
119105, 108, 113, 118divdirapd 8725 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  +  ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) ) )  /  ( z  -  C ) )  =  ( ( ( ( ( F `  z )  -  ( F `  C )
)  x.  ( G `
 z ) )  /  ( z  -  C ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  x.  ( F `  C
) )  /  (
z  -  C ) ) ) )
120103, 29mulcld 7919 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  x.  ( G `  z )
)  e.  CC )
12133, 29mulcld 7919 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  C )  x.  ( G `  z )
)  e.  CC )
12233, 106mulcld 7919 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  C )  x.  ( G `  C )
)  e.  CC )
123120, 121, 122npncand 8233 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  z )
) )  +  ( ( ( F `  C )  x.  ( G `  z )
)  -  ( ( F `  C )  x.  ( G `  C ) ) ) )  =  ( ( ( F `  z
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
124103, 33, 29subdird 8313 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  x.  ( G `
 z ) )  =  ( ( ( F `  z )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  z )
) ) )
125107, 33mulcomd 7920 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  =  ( ( F `
 C )  x.  ( ( G `  z )  -  ( G `  C )
) ) )
12633, 29, 106subdid 8312 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  C )  x.  (
( G `  z
)  -  ( G `
 C ) ) )  =  ( ( ( F `  C
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
127125, 126eqtrd 2198 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  =  ( ( ( F `  C )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  C )
) ) )
128124, 127oveq12d 5860 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  +  ( ( ( G `  z )  -  ( G `  C )
)  x.  ( F `
 C ) ) )  =  ( ( ( ( F `  z )  x.  ( G `  z )
)  -  ( ( F `  C )  x.  ( G `  z ) ) )  +  ( ( ( F `  C )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  C )
) ) ) )
12928, 28elind 3307 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  ( X  i^i  X ) )
1306ffnd 5338 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  X )
131130adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F  Fn  X )
13225ffnd 5338 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  X )
133132adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G  Fn  X )
134 ssexg 4121 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
13511, 40, 134sylancl 410 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  _V )
136135adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  e.  _V )
137 eqid 2165 . . . . . . . . . . 11  |-  ( X  i^i  X )  =  ( X  i^i  X
)
138 eqidd 2166 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  =  ( F `  z ) )
139 eqidd 2166 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  =  ( G `  z ) )
140120adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  ( X  i^i  X ) )  ->  ( ( F `  z )  x.  ( G `  z
) )  e.  CC )
141131, 133, 136, 136, 137, 138, 139, 140ofvalg 6059 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  ( X  i^i  X ) )  ->  ( ( F  oF  x.  G
) `  z )  =  ( ( F `
 z )  x.  ( G `  z
) ) )
142129, 141mpdan 418 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  x.  G ) `  z )  =  ( ( F `  z
)  x.  ( G `
 z ) ) )
14323, 23elind 3307 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( X  i^i  X ) )
144 eqidd 2166 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  =  ( F `  C ) )
145 eqidd 2166 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  =  ( G `  C ) )
146122adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  ( X  i^i  X ) )  ->  ( ( F `  C )  x.  ( G `  C
) )  e.  CC )
147131, 133, 136, 136, 137, 144, 145, 146ofvalg 6059 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  ( X  i^i  X ) )  ->  ( ( F  oF  x.  G
) `  C )  =  ( ( F `
 C )  x.  ( G `  C
) ) )
148143, 147mpidan 420 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  x.  G ) `  C )  =  ( ( F `  C
)  x.  ( G `
 C ) ) )
149142, 148oveq12d 5860 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  x.  G
) `  z )  -  ( ( F  oF  x.  G
) `  C )
)  =  ( ( ( F `  z
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
150123, 128, 1493eqtr4d 2208 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  +  ( ( ( G `  z )  -  ( G `  C )
)  x.  ( F `
 C ) ) )  =  ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) ) )
151150oveq1d 5857 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  +  ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) ) )  /  ( z  -  C ) )  =  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )
152104, 29, 113, 118div23apd 8724 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) ) )
153107, 33, 113, 118div23apd 8724 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( G `  z )  -  ( G `  C ) )  x.  ( F `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( F `  C ) ) )
154152, 153oveq12d 5860 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  / 
( z  -  C
) )  +  ( ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  /  ( z  -  C ) ) )  =  ( ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) )
155119, 151, 1543eqtr3d 2206 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  x.  G ) `  z
)  -  ( ( F  oF  x.  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) )
156155mpteq2dva 4072 . . . 4  |-  ( ph  ->  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) )
157156oveq1d 5857 . . 3  |-  ( ph  ->  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z
)  -  ( ( F  oF  x.  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) lim CC  C ) )
158101, 157eleqtrrd 2246 . 2  |-  ( ph  ->  ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
159 eqid 2165 . . 3  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )
160 mulcl 7880 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
161160adantl 275 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
162 inidm 3331 . . . 4  |-  ( X  i^i  X )  =  X
163161, 6, 25, 135, 135, 162off 6062 . . 3  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
1642, 3, 159, 5, 163, 7eldvap 13291 . 2  |-  ( ph  ->  ( C ( S  _D  ( F  oF  x.  G )
) ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C )
) )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  (
( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) ) ) )
16510, 158, 164mpbir2and 934 1  |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {crab 2448   _Vcvv 2726    i^i cin 3115    C_ wss 3116   <.cop 3579   U.cuni 3789   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   dom cdm 4604    |` cres 4606    o. ccom 4608   Rel wrel 4609    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842    oFcof 6048    ^pm cpm 6615   CCcc 7751    + caddc 7756    x. cmul 7758    - cmin 8069   # cap 8479    / cdiv 8568   abscabs 10939   ↾t crest 12556   MetOpencmopn 12625   Topctop 12635  TopOnctopon 12648   intcnt 12733    Cn ccn 12825    CnP ccnp 12826    tX ctx 12892   -cn->ccncf 13197   lim CC climc 13263    _D cdv 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by:  dvmulxx  13308  dvimulf  13310  dvef  13328
  Copyright terms: Public domain W3C validator