ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tx2cn Unicode version

Theorem tx2cn 14944
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx2cn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )

Proof of Theorem tx2cn
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 6306 . . 3  |-  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y
21a1i 9 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y )
3 ffn 5473 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> Y  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
4 elpreima 5754 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y
) ) " w
)  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) ) )
51, 3, 4mp2b 8 . . . . . . 7  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) )
6 fvres 5651 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  (
( 2nd  |`  ( X  X.  Y ) ) `
 z )  =  ( 2nd `  z
) )
76eleq1d 2298 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  ( 2nd `  z
)  e.  w ) )
8 1st2nd2 6321 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
9 xp1st 6311 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
10 elxp6 6315 . . . . . . . . . . . 12  |-  ( z  e.  ( X  X.  w )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
11 anass 401 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
)  <->  ( z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
1210, 11bitr4i 187 . . . . . . . . . . 11  |-  ( z  e.  ( X  X.  w )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
) )
1312baib 924 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  ->  ( z  e.  ( X  X.  w
)  <->  ( 2nd `  z
)  e.  w ) )
148, 9, 13syl2anc 411 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
z  e.  ( X  X.  w )  <->  ( 2nd `  z )  e.  w
) )
157, 14bitr4d 191 . . . . . . . 8  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  z  e.  ( X  X.  w ) ) )
1615pm5.32i 454 . . . . . . 7  |-  ( ( z  e.  ( X  X.  Y )  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
175, 16bitri 184 . . . . . 6  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
18 toponss 14700 . . . . . . . . . 10  |-  ( ( S  e.  (TopOn `  Y )  /\  w  e.  S )  ->  w  C_  Y )
1918adantll 476 . . . . . . . . 9  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  w  C_  Y )
20 xpss2 4830 . . . . . . . . 9  |-  ( w 
C_  Y  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
2119, 20syl 14 . . . . . . . 8  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
2221sseld 3223 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  -> 
z  e.  ( X  X.  Y ) ) )
2322pm4.71rd 394 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) ) )
2417, 23bitr4id 199 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  <->  z  e.  ( X  X.  w
) ) )
2524eqrdv 2227 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  =  ( X  X.  w
) )
26 toponmax 14699 . . . . . 6  |-  ( R  e.  (TopOn `  X
)  ->  X  e.  R )
27 txopn 14939 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( X  e.  R  /\  w  e.  S ) )  -> 
( X  X.  w
)  e.  ( R 
tX  S ) )
2827expr 375 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  X  e.  R )  ->  (
w  e.  S  -> 
( X  X.  w
)  e.  ( R 
tX  S ) ) )
2926, 28mpidan 423 . . . . 5  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( w  e.  S  ->  ( X  X.  w )  e.  ( R  tX  S
) ) )
3029imp 124 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  e.  ( R  tX  S
) )
3125, 30eqeltrd 2306 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  e.  ( R  tX  S
) )
3231ralrimiva 2603 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) )
33 txtopon 14936 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
34 iscn 14871 . . 3  |-  ( ( ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
3533, 34sylancom 420 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
362, 32, 35mpbir2and 950 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   <.cop 3669    X. cxp 4717   `'ccnv 4718    |` cres 4721   "cima 4722    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285  TopOnctopon 14684    Cn ccn 14859    tX ctx 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-topgen 13293  df-top 14672  df-topon 14685  df-bases 14717  df-cn 14862  df-tx 14927
This theorem is referenced by:  txcn  14949  cnmpt2nd  14963
  Copyright terms: Public domain W3C validator