Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tx2cn | Unicode version |
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
tx2cn | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f2ndres 6102 | . . 3 | |
2 | 1 | a1i 9 | . 2 TopOn TopOn |
3 | ffn 5316 | . . . . . . . 8 | |
4 | elpreima 5583 | . . . . . . . 8 | |
5 | 1, 3, 4 | mp2b 8 | . . . . . . 7 |
6 | fvres 5489 | . . . . . . . . . 10 | |
7 | 6 | eleq1d 2226 | . . . . . . . . 9 |
8 | 1st2nd2 6117 | . . . . . . . . . 10 | |
9 | xp1st 6107 | . . . . . . . . . 10 | |
10 | elxp6 6111 | . . . . . . . . . . . 12 | |
11 | anass 399 | . . . . . . . . . . . 12 | |
12 | 10, 11 | bitr4i 186 | . . . . . . . . . . 11 |
13 | 12 | baib 905 | . . . . . . . . . 10 |
14 | 8, 9, 13 | syl2anc 409 | . . . . . . . . 9 |
15 | 7, 14 | bitr4d 190 | . . . . . . . 8 |
16 | 15 | pm5.32i 450 | . . . . . . 7 |
17 | 5, 16 | bitri 183 | . . . . . 6 |
18 | toponss 12384 | . . . . . . . . . 10 TopOn | |
19 | 18 | adantll 468 | . . . . . . . . 9 TopOn TopOn |
20 | xpss2 4694 | . . . . . . . . 9 | |
21 | 19, 20 | syl 14 | . . . . . . . 8 TopOn TopOn |
22 | 21 | sseld 3127 | . . . . . . 7 TopOn TopOn |
23 | 22 | pm4.71rd 392 | . . . . . 6 TopOn TopOn |
24 | 17, 23 | bitr4id 198 | . . . . 5 TopOn TopOn |
25 | 24 | eqrdv 2155 | . . . 4 TopOn TopOn |
26 | toponmax 12383 | . . . . . 6 TopOn | |
27 | txopn 12625 | . . . . . . 7 TopOn TopOn | |
28 | 27 | expr 373 | . . . . . 6 TopOn TopOn |
29 | 26, 28 | mpidan 420 | . . . . 5 TopOn TopOn |
30 | 29 | imp 123 | . . . 4 TopOn TopOn |
31 | 25, 30 | eqeltrd 2234 | . . 3 TopOn TopOn |
32 | 31 | ralrimiva 2530 | . 2 TopOn TopOn |
33 | txtopon 12622 | . . 3 TopOn TopOn TopOn | |
34 | iscn 12557 | . . 3 TopOn TopOn | |
35 | 33, 34 | sylancom 417 | . 2 TopOn TopOn |
36 | 2, 32, 35 | mpbir2and 929 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 wss 3102 cop 3563 cxp 4581 ccnv 4582 cres 4585 cima 4586 wfn 5162 wf 5163 cfv 5167 (class class class)co 5818 c1st 6080 c2nd 6081 TopOnctopon 12368 ccn 12545 ctx 12612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-map 6588 df-topgen 12332 df-top 12356 df-topon 12369 df-bases 12401 df-cn 12548 df-tx 12613 |
This theorem is referenced by: txcn 12635 cnmpt2nd 12649 |
Copyright terms: Public domain | W3C validator |