ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tx2cn Unicode version

Theorem tx2cn 12630
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx2cn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )

Proof of Theorem tx2cn
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 6102 . . 3  |-  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y
21a1i 9 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y )
3 ffn 5316 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> Y  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
4 elpreima 5583 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y
) ) " w
)  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) ) )
51, 3, 4mp2b 8 . . . . . . 7  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) )
6 fvres 5489 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  (
( 2nd  |`  ( X  X.  Y ) ) `
 z )  =  ( 2nd `  z
) )
76eleq1d 2226 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  ( 2nd `  z
)  e.  w ) )
8 1st2nd2 6117 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
9 xp1st 6107 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
10 elxp6 6111 . . . . . . . . . . . 12  |-  ( z  e.  ( X  X.  w )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
11 anass 399 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
)  <->  ( z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
1210, 11bitr4i 186 . . . . . . . . . . 11  |-  ( z  e.  ( X  X.  w )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
) )
1312baib 905 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  ->  ( z  e.  ( X  X.  w
)  <->  ( 2nd `  z
)  e.  w ) )
148, 9, 13syl2anc 409 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
z  e.  ( X  X.  w )  <->  ( 2nd `  z )  e.  w
) )
157, 14bitr4d 190 . . . . . . . 8  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  z  e.  ( X  X.  w ) ) )
1615pm5.32i 450 . . . . . . 7  |-  ( ( z  e.  ( X  X.  Y )  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
175, 16bitri 183 . . . . . 6  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
18 toponss 12384 . . . . . . . . . 10  |-  ( ( S  e.  (TopOn `  Y )  /\  w  e.  S )  ->  w  C_  Y )
1918adantll 468 . . . . . . . . 9  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  w  C_  Y )
20 xpss2 4694 . . . . . . . . 9  |-  ( w 
C_  Y  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
2119, 20syl 14 . . . . . . . 8  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
2221sseld 3127 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  -> 
z  e.  ( X  X.  Y ) ) )
2322pm4.71rd 392 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) ) )
2417, 23bitr4id 198 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  <->  z  e.  ( X  X.  w
) ) )
2524eqrdv 2155 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  =  ( X  X.  w
) )
26 toponmax 12383 . . . . . 6  |-  ( R  e.  (TopOn `  X
)  ->  X  e.  R )
27 txopn 12625 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( X  e.  R  /\  w  e.  S ) )  -> 
( X  X.  w
)  e.  ( R 
tX  S ) )
2827expr 373 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  X  e.  R )  ->  (
w  e.  S  -> 
( X  X.  w
)  e.  ( R 
tX  S ) ) )
2926, 28mpidan 420 . . . . 5  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( w  e.  S  ->  ( X  X.  w )  e.  ( R  tX  S
) ) )
3029imp 123 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  e.  ( R  tX  S
) )
3125, 30eqeltrd 2234 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  e.  ( R  tX  S
) )
3231ralrimiva 2530 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) )
33 txtopon 12622 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
34 iscn 12557 . . 3  |-  ( ( ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
3533, 34sylancom 417 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
362, 32, 35mpbir2and 929 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435    C_ wss 3102   <.cop 3563    X. cxp 4581   `'ccnv 4582    |` cres 4585   "cima 4586    Fn wfn 5162   -->wf 5163   ` cfv 5167  (class class class)co 5818   1stc1st 6080   2ndc2nd 6081  TopOnctopon 12368    Cn ccn 12545    tX ctx 12612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-map 6588  df-topgen 12332  df-top 12356  df-topon 12369  df-bases 12401  df-cn 12548  df-tx 12613
This theorem is referenced by:  txcn  12635  cnmpt2nd  12649
  Copyright terms: Public domain W3C validator