Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tx2cn | Unicode version |
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
tx2cn | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f2ndres 6128 | . . 3 | |
2 | 1 | a1i 9 | . 2 TopOn TopOn |
3 | ffn 5337 | . . . . . . . 8 | |
4 | elpreima 5604 | . . . . . . . 8 | |
5 | 1, 3, 4 | mp2b 8 | . . . . . . 7 |
6 | fvres 5510 | . . . . . . . . . 10 | |
7 | 6 | eleq1d 2235 | . . . . . . . . 9 |
8 | 1st2nd2 6143 | . . . . . . . . . 10 | |
9 | xp1st 6133 | . . . . . . . . . 10 | |
10 | elxp6 6137 | . . . . . . . . . . . 12 | |
11 | anass 399 | . . . . . . . . . . . 12 | |
12 | 10, 11 | bitr4i 186 | . . . . . . . . . . 11 |
13 | 12 | baib 909 | . . . . . . . . . 10 |
14 | 8, 9, 13 | syl2anc 409 | . . . . . . . . 9 |
15 | 7, 14 | bitr4d 190 | . . . . . . . 8 |
16 | 15 | pm5.32i 450 | . . . . . . 7 |
17 | 5, 16 | bitri 183 | . . . . . 6 |
18 | toponss 12664 | . . . . . . . . . 10 TopOn | |
19 | 18 | adantll 468 | . . . . . . . . 9 TopOn TopOn |
20 | xpss2 4715 | . . . . . . . . 9 | |
21 | 19, 20 | syl 14 | . . . . . . . 8 TopOn TopOn |
22 | 21 | sseld 3141 | . . . . . . 7 TopOn TopOn |
23 | 22 | pm4.71rd 392 | . . . . . 6 TopOn TopOn |
24 | 17, 23 | bitr4id 198 | . . . . 5 TopOn TopOn |
25 | 24 | eqrdv 2163 | . . . 4 TopOn TopOn |
26 | toponmax 12663 | . . . . . 6 TopOn | |
27 | txopn 12905 | . . . . . . 7 TopOn TopOn | |
28 | 27 | expr 373 | . . . . . 6 TopOn TopOn |
29 | 26, 28 | mpidan 420 | . . . . 5 TopOn TopOn |
30 | 29 | imp 123 | . . . 4 TopOn TopOn |
31 | 25, 30 | eqeltrd 2243 | . . 3 TopOn TopOn |
32 | 31 | ralrimiva 2539 | . 2 TopOn TopOn |
33 | txtopon 12902 | . . 3 TopOn TopOn TopOn | |
34 | iscn 12837 | . . 3 TopOn TopOn | |
35 | 33, 34 | sylancom 417 | . 2 TopOn TopOn |
36 | 2, 32, 35 | mpbir2and 934 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wss 3116 cop 3579 cxp 4602 ccnv 4603 cres 4606 cima 4607 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 c1st 6106 c2nd 6107 TopOnctopon 12648 ccn 12825 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cn 12828 df-tx 12893 |
This theorem is referenced by: txcn 12915 cnmpt2nd 12929 |
Copyright terms: Public domain | W3C validator |