ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0ii Unicode version

Theorem n0ii 3459
Description: If a class has elements, then it is not empty. Inference associated with n0i 3456. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
n0ii.1  |-  A  e.  B
Assertion
Ref Expression
n0ii  |-  -.  B  =  (/)

Proof of Theorem n0ii
StepHypRef Expression
1 n0ii.1 . 2  |-  A  e.  B
2 n0i 3456 . 2  |-  ( A  e.  B  ->  -.  B  =  (/) )
31, 2ax-mp 5 1  |-  -.  B  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    e. wcel 2167   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator